
OME Contributing Developer

unknown

Feb 01, 2023

CONTENTS

1 Checking out the source code 3

2 Using Git 7

3 Code contributions 23

4 Contributor License Agreement 27

5 Team communication 29

6 Team workflow summary 35

7 Ansible roles development 37

8 Java components (Maven) 39

9 Java components (Gradle) 43

10 C++ components 45

11 OME development tools 49

12 OME deployment tools 59

13 Continuous integration 63

14 Editing the OME documentation 71

15 Jekyll-hosted websites 79

16 Development of the OME Data Model 81

17 Changing the schema 87

18 Python development 91

19 Publishing to Pypi 93

Index 95

i

ii

OME Contributing Developer

This documentation is for developers who want to contribute code to OME consortium projects. It includes internal
developer practices and workflows, standard procedures for tasks such as release, and other information which may be
valuable to a wider audience.

CONTENTS 1

OME Contributing Developer

2 CONTENTS

CHAPTER

ONE

CHECKING OUT THE SOURCE CODE

This section is primarily designed for the core OME developers who want to check out the main code base using Git.
If you need guidance in installing, configuring and using Git, see the Using Git page.

1.1 Code locations

OME code is stored in multiple git repositories, each of which is available from several locations.

1.1.1 OMERO

The main repository, known as ome.git, is available from:

• https://github.com/ome/openmicroscopy

• git://openmicroscopy.org/ome.git

1.1.2 Bio-Formats

The Bio-Formats repository is available from:

• https://github.com/ome/bioformats

• git://openmicroscopy.org/bioformats.git

1.1.3 Other repositories

Each member of the GitHub openmicroscopy organization, as well as anyone else who has clicked the “Fork” button,
will have their own repository. These are listed here:

• https://github.com/ome/openmicroscopy/network/members

• https://github.com/ome/bioformats/network/members

3

https://github.com/ome/openmicroscopy
https://github.com/ome/bioformats
https://github.com/ome
https://github.com/ome/openmicroscopy/network/members
https://github.com/ome/bioformats/network/members

OME Contributing Developer

1.2 Cloning the source code

Most OME development is currently happening on GitHub, therefore it is highly suggested that you become familiar
with how it works, if not create an account for yourself.

Note: There is extensive guidance on the Using Git page and the following examples assume you have set up your
account using “gh” for your personal repositories and “origin” as the official repositories as described there.

Start by cloning the official repository for the project you want to work with e.g.:

git clone https://github.com/ome/openmicroscopy.git

Since the openmicroscopy (OMERO) repository now makes use of submodules, you first need to initialize all the
submodules:

cd openmicroscopy
git submodule update --init

Alternatively, with version 1.6.5 of Git and later, you can pass the --recursive option to git clone and initialize all
submodules:

git clone --recursive https://github.com/ome/openmicroscopy.git

Note: The use of submodules does not apply to Bio-Formats, which has all code and documentation within a single
repository at https://github.com/ome/bioformats.git

The natural workflow when using GitHub is not just to download someone else’s repository, but also to create a per-
sonal working copy. Go to the repository page at https://github.com/ome/openmicroscopy or https://github.com/ome/
bioformats and click on “Fork”. This will create a copy of the repository in your own personal space e.g.:

https://github.com/YOURNAME/bioformats

which can be added to your local repository as another remote:

git remote add gh git@github.com:YOURNAME/bioformats.git

Note: For the SSH (Secure Shell) transport to work, you will need to follow some of the instructions under https:
//github.com/account/ssh

Depending on which repository you cloned first, either origin/develop or gh/develop will be the “develop” branch of
your own fork of openmicroscopy/openmicroscopy or openmicroscopy/bioformats. The example below assumes that
“gh” is your own personal GitHub repository, and “origin” is the official openmicroscopy repository.

You may even want to remove the “develop” branch from your fork since all branching should happen from the official
develop branch. If you’d prefer to keep a copy of “develop” in “gh”, that is fine, but you may then need to keep your
develop up-to-date with the official develop:

git checkout develop
git reset --hard origin/develop # Warning: This will delete any unsaved changes and␣
→˓commits to develop!

(continues on next page)

4 Chapter 1. Checking out the source code

https://github.com/ome/bioformats.git
https://github.com/ome/openmicroscopy
https://github.com/ome/bioformats
https://github.com/ome/bioformats
https://github.com/account/ssh
https://github.com/account/ssh

OME Contributing Developer

(continued from previous page)

git push -f gh develop # Warning: This will replace gh/develop with the␣
→˓official version remotely.

1.2. Cloning the source code 5

OME Contributing Developer

6 Chapter 1. Checking out the source code

CHAPTER

TWO

USING GIT

The following is primarily designed for the core OME developers who are contributing to our code base using Git. It
should contain all the useful commands and configuration you need for doing most Git tasks.

Note: This section assumes that “gh” is your own personal GitHub repository, and “origin” is one of the official
openmicroscopy repositories.

2.1 Installing Git

In general, see the Git downloads page for installation options.

2.1.1 Linux

Most flavors of Linux have git available through the package manager. For example, on Debian or Ubuntu:

sudo apt-get install git

2.1.2 Mac OS X

You can install Git using Homebrew:

brew install git

Or you can use the binary installer.

2.1.3 Windows

We recommend using either Git for Windows for a basic Git installation, or Cygwin for a full-featured Unix-style
environment that includes Git. You can also use TortoiseGit for Git shell integration. You may also want to consider
installing VirtualBox with a Linux guest OS to make your life easier. Lastly, when using Git on Windows, please be
aware of the CRLF conversion issue.

7

https://git-scm.com/download
https://github.com/Homebrew
https://git-scm.com/download
https://git-for-windows.github.io
https://www.cygwin.com/
https://tortoisegit.org
https://www.virtualbox.org/
https://help.github.com/articles/dealing-with-line-endings/

OME Contributing Developer

2.2 Git configuration

If you are looking to get started as quickly as possible, the minimum you will need is to have Git installed and then:

git config --global user.name "Full name"
git config --global user.email YOUR_EMAIL
git clone --recursive https://github.com/ome/REPOSITORY_NAME
cd REPOSITORY_NAME

You will not be able to push back to this repository, but you will at least have something you can start looking at.

Git provides a number of options which can make working with it considerably more pleasant. These configuration
options are available either globally in $HOME/.gitconfig or in the .git directory of your repository. The file is in
INI-format, but can also be modified using the git config command, as illustrated in the examples following.

The most important thing is to update your ‘global’ credentials that are used in your commits. These values are saved
in ~/.gitconfig:

git config --global user.name "Full name"
git config --global user.email YOUR_EMAIL

If you have a PGP key for signing commits and tags, you may want to add it as well:

git config --global user.signingkey YOUR_PGP_KEY_ID

Color and display options make log and diff output much more friendly:

git config --global color.ui true
git config --global color.diff auto
git config --global color.graph auto
git config --global color.status auto
git config --global color.branch auto

git config --global core.ui always
git config --global core.editor mate_wait

Aliases provide a way to make shortcuts for longer Git commands. One that is often used among the OME team is
graph:

git config --global alias.graph "log --date-order --graph --decorate --oneline"

See Helpful command aliases for more examples.

2.3 Interacting with GitHub

2.3.1 Cloning the repositories

You can fork any of the openmicroscopy repositories you will be working on by clicking the fork icon in the top
righthand corner of each repo’s homepage on GitHub. This will give you your own copy of the repo on GitHub. To set
this up from the command line so you can push to it and open PRs, you need to clone the repo. The following example
uses the documentation repo:

8 Chapter 2. Using Git

http://gitready.com/intermediate/2009/02/06/helpful-command-aliases.html

OME Contributing Developer

git clone https://github.com/ome/ome-documentation
cd ome-documentation
git remote add gh git@github.com:YOUR_USERNAME/ome-documentation.git

To clone private repositories you need to use the SSH protocol:

git clone git@github.com:openmicroscopy/REPO_NAME.git

2.3.2 GitHub remotes

You can add the other members of the OME network as remotes, so you can follow what they are doing:

git remote add SOMEUSER git://github.com/SOMEUSER/openmicroscopy.git
git fetch SOMEUSER

If you would like to work more closely with someone, via pushing directly to their branch or they from yours, then
you can have them add you as a collaborator on their repository or do the same for them on yours. This is done under
https://github.com/account/repositories

If you have not made such a repository yet as a remote, then you should do so using the SSH protocol:

git remote add SOMEUSER git@github.com:SOMEUSER/openmicroscopy.git

Otherwise, you will need to modify its URL

git remote set-url SOMEUSER git@github.com:SOMEUSER/openmicroscopy.git

If you would like to be kept up-to-date on what several users are doing on GitHub, you can set the “default remotes”
value to the list of people you would like to check in .git/config:

git config remotes.default "ome team origin gh official chris ola will jm colin"

Now, git remote update will check the above list of repositories.

2.3.3 Pushing to GitHub

When you have work which you want to share with the rest of the team, it is vital that you push it to your GitHub fork.

git push gh your-branch

This will create a new branch, and the same command can be used to subsequently update that branch.

If you NEED to use a different name for the branch on GitHub, you can do:

git push gh your-branch:refs/heads/branch-name-on-gh

As mentioned elsewhere, the “refs/heads/” prefix only needs to be used to create a new branch, and can be dropped for
subsequent pushes.

2.3. Interacting with GitHub 9

https://github.com/account/repositories

OME Contributing Developer

2.3.4 Tracking others’ branches

The flip-side of pushing your own branches is being aware that other OME developers will also be pushing theirs.
GitHub provides a number of ways of monitoring either a user or a repository. Notifications about what watched users
and repositories are doing can be seen in your GitHub inbox or via RSS feeds. See Be social for more information.

Even if you do not feel able to watch the everyone’s repository, you will likely want to periodically check in on the
current Pull Requests (PRs). These will contain screenshots and other updates about what the team is working on.
When the PRs have been sufficiently reviewed, they will be merged into the develop branch so that others’ work will
start to be based on it.

2.3.5 Cleaning up your GitHub branches

Once your branches have been merged into the mainline (“develop” of openmicroscopy/openmicroscopy) you should
delete them from your repository.

git branch -d your-branch
git push gh :your-branch

This way, anyone looking at your fork clearly sees what is currently in progress or upcoming.

2.4 Common Git Commands

Although everyone has a slightly different way of working, the following command examples should show you much
of what you will want to do on a daily or weekly basis when working with OME via Git.

See if you have any changes that you might need to commit. This also displays some useful tips on how to add and
remove files:

git status

Create a branch from the “develop” branch:

git checkout -b feature/foo origin/develop

At this point, you are ready to do some work:

git checkout my-work # Just to be sure.
vim README.txt # edit files
git merge anotheruser/some-work
git status # See what you have done

You can also add files or directories to the ‘cache’ with interactive choice of which ‘chunks’ to accept or decline (useful
for checking that you are not adding any unintended changes, print statements etc.):

git add -p path/to/dir/or/file

Check the status again - to see summary of what you are about to commit:

git status

Any remaining changes that you want to discard can be reverted by:

10 Chapter 2. Using Git

https://help.github.com/articles/be-social/
https://github.com/ome/openmicroscopy/pulls

OME Contributing Developer

git checkout -- path/to/file.txt

When committing the code you have just modified/merged your commit message should refer to related tickets. E.g.
“See #1111” will link the commit to the ticket on trac, and “Fixes #2222”” will link and close the ticket on trac.

git commit -m "Add message here and refer to the ticket number. See #1234. Fixes #5678"

Note: If you want to add more than a short one-line message, you can omit the -m “message” and Git will open your
specified editor, where you should add a single line summary followed by line space and then a paragraph of more text.
See Commit messages for more discussion.

After you have committed, you can keep working and committing as above - the changes are only saved to your local
git.

For example, you can move to another branch to continue work on a different feature. To see a list branches:

git branch

Add the -a to list remote branches too.

To simply move between branches, use git checkout. All the files on your file-system will be updated to the new
branch:

git checkout dev_4_2

Note: Make sure they are refreshed if you have files open in an editor or IDE

If you have forgotten what you did on a particular branch, you can use git log. Add the -p flag to see the actual diff
for each commit.

You can use the first 5 characters of a commit’s hash key to begin the log at a certain commit. E.g. show diff for commit
83dad:

git log 83dad -p

Or to display a nice graph:

git log --graph --decorate --oneline

If an alias has been set-up as described in the configuration section above, you can just do:

git graph

This is most useful when showing how two branches are related:

git graph origin/develop develop

When you are ready, you will need to push your local changes to your own forked repository in order to share with
others. If the branch does not yet exist in your repository, you will need to prefix the push command with refs/heads:

git push gh my_fix_123:refs/heads/my_fix_123

After that initial push, the following will suffice as long as you are on the my_fix_123 branch:

2.4. Common Git Commands 11

https://trac.openmicroscopy.org/ome/ticket/1111
https://trac.openmicroscopy.org/ome/ticket/2222

OME Contributing Developer

git push gh my_fix_123

You will find it easier if you name remote branches the same as local branch though it is not a requirement:

git push gh name/of/branch:refs/heads/name/of/branch
E.g:
git push gh feature/export:refs/heads/feature/export

Once you have pushed, you can open a “Pull Request” to inform the team about the changes. More on that below.

You can also create a local branch from a remote branch, whether it is your own or belongs to someone else on the
team. These will be ‘tracked’ so that commits you push automatically go to the corresponding remote branch:

git fetch SOMEUSER && git checkout -b name/of/branch SOMEUSER/name/of/branch
work on the branch then:
git push SOMEUSER name/of/branch

2.4.1 Collaborating via git rebase

If you have been permitted write access to someone else’s forked repository, or you have granted someone else write
access to your repository, then there is a further aspect that you need to be aware of.

If both of you are working on the my_fix_123 branch from above, then when it is time to push, your version may not
represent the latest state. To prevent losing any commits or introducing unnecessary merge messages, you will first
need to access the latest remote changes:

git fetch gh

To see the differences between your local changes (‘my_fix_123’) and the remote changes (‘gh/my_fix_123’), you can
use the log command:

git log --graph --date-order gh/my_fix_123 my_fix_123

If the remote branch (‘gh/my_fix_123’) have moved ahead of yours, then you will want to rebase your work on top of
this new work:

git rebase gh/my_fix_123

Now your local changes will follow the remote changes in the log. You can check how this looks by viewing the graph
again:

git log --graph --date-order gh/my_fix_123 my_fix_123

Now you can push your changes on the ‘my_fix_123’ branch to the remote repository:

git push gh my_fix_123

Rebasing allows you to update the ‘base’ point at which you branched from another branch (as described above). You
can also use ‘rebase’ to organize your commits before merging.

It can strip whitespace, since it is good practice not to commit extra whitespace at the end of lines or files. Git allows
you to remove all extra whitespace during rebase e.g. to origin/develop branch

git rebase --whitespace=strip origin/develop

12 Chapter 2. Using Git

OME Contributing Developer

Rebase “interactive” using the -i flag allows you to remove, edit, combine etc commits. Git will open an editor to allow
you to edit the commit summary along with instructions on how to omit, modify commits. For example, to rebase onto
origin/develop branch:

git rebase -i origin/develop

2.5 Working with submodules

Since submodules are git repositories, all the tools described previously (add remotes, edit/merge, commit. . .) can be
used within each submodule repository:

$ cd components/bioformats
$ git remote add melissalinkert git@github.com:melissalinkert/bioformats.git
$ git remote
origin
melissalinkert
sbesson
$ git checkout -b new_branch origin/develop
$ vim Readme.txt
$ git merge melissalinkert/branch
$ git commit -m "Merge branch"
$ git push sbesson new_branch

Additionally, you can perform an update of the submodule from the parent project, i.e. checkout a specific commit.
After updating, the submodule ends up in a detached HEAD state:

$ cd code/openmicroscopy
$ git submodule update
Submodule path 'components/bioformats': checked out
→˓'9328b869b9ba61851adaa3db428ce25f0ca56845'
$ cd components/bioformats
$ git branch
* (no branch)
develop

If you move between branches in the project, you may end up in a different state of the submodule:

$ cd ../..
$ git checkout my-branch
M components/bioformats
Switched to branch 'my-branch'

$ git status
On branch my-branch
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: components/bioformats (new commits)
#
no changes added to commit (use "git add" and/or "git commit -a")

2.5. Working with submodules 13

OME Contributing Developer

If you do not want to modify the submodule state, run git submodule update. Be careful though, the git
subdmodule update command will silently delete all local changes under the submodule. If you want to keep your
changes, make sure you have pushed them to GitHub.

To advance the submodule to another commit, you can run the git add command:

cd components/bioformats
git merge gh/branch
git commit -m "Merged branch"
git push

cd ..
git add bioformats
git commit -m "Move to latest bioformats"

Warning: Be careful NOT to add a trailing slash when adding the submodule, the following command would
want to delete the submodule and add all the files in the submodule directory:

git add components/bioformats/

There are Git hooks available to make working with submodules safer. See post-merge-checkout for an example.

2.6 Commit messages

All commit messages in git should start with a single line of 72 characters or less, following by a blank line, followed
by any other text.

Add feature X (See #123, Fix #321)
<this line left blank>
More description about X. It’s really great ...

Many git tools expect exactly this format, not the least of which is GitHub. If you would like to see how these commit
messages are rendered on GitHub, take a look at the repository https://github.com/kneath/commits

You can read more about commit messages at A Note About Git Commit Messages.

2.7 Rebasing to keep code clean

Rebasing allows you to update the ‘base’ point at which you branched from another branch (as described above). You
can also use ‘rebase’ to organize your commits before merging.

• Strip whitespace: It is good practice not to commit extra whitespace at the end of lines or files. Git allows you
to remove all extra whitespace during rebase - E.g. to origin/develop branch

git rebase --whitespace=strip origin/develop

• If you used the set-up script above, the alias ‘ws’ was added to allow you to achieve the same action with:

git ws origin/develop

14 Chapter 2. Using Git

https://github.com/chaitanyagupta/gitutils/blob/master/submodule-hooks/post-merge-checkout
https://github.com/kneath/commits
https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

OME Contributing Developer

• Rebase “interactive”: To remove, edit, combine etc. your commits, use the -i flag. Git will open an editor
to allow you to edit the commit summary (gives instructions too). For example, to rebase onto origin/develop
branch:

git rebase -i origin/develop

2.8 Branch naming

We roughly follow the git-flow style of naming and managing branch. Info about the idea can be found under A
successful Git branching model. There is also a screencast available on Vimeo.

2.8. Branch naming 15

https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/
https://vimeo.com/16018419

OME Contributing Developer

The master branch is always “releasable”, almost always by having a tagged version merged into it. The develop branch

16 Chapter 2. Using Git

OME Contributing Developer

is where unstable work takes place. At times, another stable branch with the version name appended (“dev_x_y”) is
also active. PRs merged into this stable branch are also rebased onto develop.

For more information about how multiple branches are being maintained currently, see Continuous integration.

2.9 Advanced: Branch management

One large goal of the work with the forked repository model is to have both team members as well as external collab-
orators be aware of upcoming features as they happen, and have them be able to comment on the work as quickly and
easily.

There is a danger of some members of the community not being aware of which branches are active and applicable,
but if our weekly meetings contain a summary of what work is happening in which branch as opposed to just which
tickets are in progress on the whiteboard, then it should be fairly easy for someone from the outside to get involved.

What follows is an explanation of the overarching way we categorize and review our branches. This is not required
reading for everyone.

2.9.1 Branch types

To make working with a larger number of branches easily, we will initially introduce some terminology. Branches
should typically be in one of three states: investigations, works-in-progress (WIP), or deliverables.

2.9. Advanced: Branch management 17

OME Contributing Developer

Investigations

At the bottom of the figure above are the investigation branches. These are efforts which are being driven possibly by
a single individual and which are possibly not a part of the current milestone. They may not lead to released code, or
they may be put on hold for some period of time while other avenues are also investigated.

WIPs

For an investigation to move up to being a work-in-progress, it should have more involvement from the rest of team and
have been discussed and documented via stories, mini-group meetings, etc. Where necessary – which will usually be
the case – the major components (Bio-Formats, the model, the database, the server, at least one client) should be under
way.

Deliverables

Finally, deliverable branches are intended for inclusion in the upcoming milestone. They have all the necessary “paper
work” – requirements, stories, tasks, scenarios, tests, screencasts, etc. Where support is needed to get all of the pieces
in place, the rest of the team can be involved. And when ready a small number (mostly likely just one) will be finalized
and merged into “develop” at a time. This represents the post-sprint “demo” concept that has been discussed elsewhere.

The backlog

One non-branch type that should also be kept in mind is the backlog. Between major deliverables and while a WIP
is being ramped up to a deliverable, the backlog should be continually worked on and the fix branches also merged in
once tested and verified.

2.9.2 Branch workflow

With the definitions, we can walk through the progression of a branch from inception to delivered code.

First, someone, perhaps even an external collaborator, creates a branch, typically starting from master or develop (having
them branch from the mainline should hopefully makes things easier later on). Work is first done locally, and then
eventually pushed to github.com/YOURUSER/openmicroscopy. If you have given access to particular members of the
team, then they may want to work directly on that branch. Alternatively, they may create branches from your branch,
and send you commits – either via Pull Request or as patches – for you to include in your work.

It is advisable to keep the OME team in the loop about your work as it progresses, e.g., by tagging ome on the forum
or by opening a Pull Request.

After it is clear that there is some interest in your investigation branch, then the related stories and possibly requirement
should be flushed out. The design of the work should be checked against the other parts of OME. For example, a GUI
addition should fit into other existing workflows, and the implications on the other client (i.e. OMERO.web’s impact
on OMERO.insight, or the other way around) should be evaluated.

At this point, the branch will most likely be considered a work-in-progress and will need to start getting ready for
release. The various related branches will need to be kept in sync. Whether through a rebase or a merge workflow, all
involved parties will need to make sure they regularly have an up-to-date view of the work going on.

For example, the “remotes.default” has been configured as above, a sensible thing to do every morning on coming to
work is to run:

git remote update

and see all changes that the team have made:

18 Chapter 2. Using Git

https://www.openmicroscopy.org/forums

OME Contributing Developer

~/git $ git remote update
Fetching team
Fetching origin
remote: Counting objects: 22, done.
remote: Compressing objects: 100% (8/8), done.
remote: Total 8 (delta 7), reused 0 (delta 0)
Unpacking objects: 100% (8/8), done.
From ssh://lust/home/git/omero
3f2ab6f..f80cbc4 dev_4_1_jcb -> origin/dev_4_1_jcb
Fetching gh
...
Fetching jm
remote: Counting objects: 46, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 24 (delta 19), reused 24 (delta 19)
Unpacking objects: 100% (24/24), done.
From git://github.com/jburel/openmicroscopy
* [new branch] feature/plateAcquisitionAnnotation -> jm/feature/
→˓plateAcquisitionAnnotation
Fetching colin
From git://github.com/ximenesuk/openmicroscopy
* [new branch] 909-Proposal2 -> colin/909-Proposal2

If you want to get the changes for all submodules, you can use:

git submodule foreach --recursive git remote update

At this point, you may need to “merge –ff-only” or just “rebase” your work to incorporate the new commits:

git checkout 909-Proposal2
git show-branch 909-Proposal2 colin/909-Proposal2
git rebase colin/909-Proposal2

Finally, the WIP branch will have advanced far enough that it should be made release-ready, which will need to be
discussed at a weekly meeting. Often at this point, the involved developers will need help from others getting the
documentation, the testing, the screencasts, the scenarios, and all the other bits and bobs (the “paper work”) ready for
release.

One at a time (at least initially), WIP branches will be picked and made into a deliverable. At this point, several people
will have looked over the code and all the paper work, and the whole team should feel comfortable with the release-state
of the branch. At this point, a Pull Request should be issued to the official openmicroscopy/openmicroscopy repository
for the final merge. All the related branches in each individual’s repository can now be deleted.

A major benefit of having the paper work per deliverable done immediately is that if it becomes necessary the mainline,
i.e. the “develop” branch of openmicroscopy/openmicroscopy, could be released far more quickly than if we have
several deliverables simultaneously in the air.

2.9. Advanced: Branch management 19

OME Contributing Developer

Merge branches

A significant disadvantage to having separate lines of inquiry in separate branches is the possibility that there will be
negative interactions between 2 or more branches when merged, and that these problems won’t be found until late in
development. To offset this risk, it is possible and advisable to begin creating “temporary merge branches” earlier in
development.

For example, if we assume that two of the branches from the git remote update command from above are intended
for release fairly soon:

• jm/feature/plateAcquisitionAnnotation

• colin/909-Proposal2

Then we can create a temporary test branch:

git checkout -b test-909-and-plate origin/develop
git merge --no-ff jm/feature/plateAcquisitionAnnotation
git merge --no-ff colin/909-Proposal2

and build and test this composite. This need not be done manually, but assuming there’s a convention like “all branches
for immediate release are prefixed with ‘deliverable/’ ”, then a jenkins job can attempt the merge, failing if it is not
possible, and run all tests if it succeeds. Any weekly testing we do can use the artifacts generated by this build to be as
sure as possible that nothing unexpected has leaked in.

Code reviews and comments

On the flip-side, a major advantage to having the above branching workflow is that is far easier to review the entire
impact and style of a deliverable before it is integrated into the mainline. Any commit or even line which is being
proposed for release can be commented as shown on https://github.com/features/code-review

If you would like to include other users beyond just the branch owner in the discussion, you can use a twitter-style name
to invite them (“@SOMEUSER”): https://github.com/blog/821-mention-somebody-they-re-notified

Pull Requests

Several times above “Pull Requests” (PR) have been mentioned. A Pull Request is a way to invite someone to merge
from one repository to another. If the commits included in the PR can be seamlessly merged, then the target user need
only click on a button. If not, then there may be some back-and-forth on the work done, similar to the code reviews of
a deliverable branch. For background, see

• About Pull Requests

• Pull Requests 2.0

If you have discovered that something in the proposed branch needs changing (and you do not have write access to the
branch itself), then you can checkout the branch, make the fixes, push the branch, and open a Pull Request.

git checkout -b new_stuff SOMEUSER/new_stuff
Modifications
git commit -a -m "My fix of the new_stuff"
git push gh new_stuff
Now go to the new_stuff branch on github.com and open the PR

GitHub’s “Open a pull request” page invites you to leave a comment under the PR title: we use this comment to describe
the PR. A good choice of PR title and description are both helpful to reviewers of your work. For the PR description

20 Chapter 2. Using Git

https://github.com/features/code-review
https://github.com/blog/821-mention-somebody-they-re-notified
https://help.github.com/articles/about-pull-requests/
https://github.com/blog/712-pull-requests-2-0

OME Contributing Developer

there may be template text already provided for you to edit. If so then do consider what it says but also feel free to
change that template as much as makes sense for describing your PR.

Pull Request conflicts

When issuing a pull request, usually you will the following message “This pull request can be automatically merged”.
If this is not the case, follow a possible workflow to fix the problem. For the sake of this example, bugs is the branch
we are working on:

push the branch to GitHub
git push gh bugs:refs/heads/bugs
issue a pull request, not possible to merge due to a conflict.

Now we need to fix the conflict:

checkout your local branch
git checkout bugs
fetch and merge origin/develop
git fetch origin
git merge origin/develop # Any conflicts will be listed
Edit the conflicting files to fix conflicts, then
git add path/to/file
git commit # Use the suggested 'merging...' message
git push gh bugs

Your branch should now be able to merge back into develop. This should only be done at the very end of a pull request
just before it is merged into origin/develop. Multiple “pull origin/develop” messages in a branch would be very bad
style.

2.10 Git resources

• Pro Git book

• https://git-scm.com/book/ch3-6.html

• A successful Git branching model

2.10. Git resources 21

https://git-scm.com/book
https://git-scm.com/book/ch3-6.html
https://nvie.com/posts/a-successful-git-branching-model/

OME Contributing Developer

22 Chapter 2. Using Git

CHAPTER

THREE

CODE CONTRIBUTIONS

In order to expedite the contribution of code to the OME project, whether individual files or entire modules such as a
service or web application, we have put together the following guidelines. If you have issues with any of the below,
please let us know.

3.1 File headers

The official header templates for each file type (Java, Python, HTML, etc.) can be found in the docs/headers.txt file
of the source repository. The correct template should be applied at the top of all newly created files. The header of
existing files should not be modified without previous discussion except with regard to keeping the year line up to date,
for example changing “2008-2011” to “2008-2013”.

3.2 Character encoding

OME Python and Java source files are all encoded in UTF-8.

3.3 Code style and linting

Code styling can be a matter of intense debate. We are in the process of introducing auto-formatters to most of our
repositories to reduce the time wasted on formatting code or discussing code styles. Where possible pre-commit is
used to manage auto-formatters such as black (Python), as well as linters such as flake8 (Python).

3.4 Copyrights

The copyright line for a newly created file is based on the institution of the creator of the file and will remain unchanged
even if copied or moved. Before redistribution of code can take place, an agreement must be reached between the OME
team and the copyright holder.

23

https://github.com/ome/openmicroscopy/blob/develop/docs/headers.txt
https://pre-commit.com/
https://black.readthedocs.io/
https://flake8.pycqa.org/

OME Contributing Developer

3.5 Licenses

The licenses of any files intended for redistribution with OME must be compatible with the GPL and more restrictively
for the web components with the AGPL. Some files in the code-base (the schema, etc.) are released under more liberal
licenses but are still compatible with the GPL.

3.6 Distribution

For a block of work to be considered for redistribution with OME, the code must further be made available in one of
the following formats.

3.6.1 Patches/Pull requests

Smaller changes to the existing code base can be submitted to the team either as patches, or preferably as pull requests
on GitHub. You can read more about pull requests on the Using Git page. The idea is that such smaller changes are
reviewed line-by-line and then maintained by the core team.

3.6.2 Submodules

Larger submissions, which cannot be effectively reviewed so intensively, should be submitted as git submodules. Such
submodules provide a unique way to describe to a component version, which becomes linked into the main codebase.
During checkout, all submodules are downloaded into the OME directory; and during the build process, submodules
are compiled into the official distribution.

The OME team cannot maintain or ship code which is only available as a long-living branch (a fork) of the code base,
and we would encourage submitters to use one of the above methods.

3.7 Procedure for accepting code contributions

External contributors will need to sign our Contributor License Agreement in order to get their pull requests reviewed.

External pull requests will get an initial review to identify if they are suitable to pass into our continuous integration
system for building and testing. We try to do this within 2 days of submission but please be patient if we are busy and
it takes longer.

If there are any obvious issues, we will comment and wait for you to fix them. Once we are confident the PR contains
no obvious errors, an “include” label will be added which means the PR will be included in the merge build jobs for
the appropriate branch.

Build failures will then be noted on the PR and we will either submit a patch or provide sufficient information for you
to fix the problem yourself. The “include” label will be removed until this is completed. The PR will be merged once
all the builds are green with the “include” label added.

If the code you wish to submit is large enough to require its own submodule, you should contact us to discuss how we
might incorporate your work into the official distribution.

24 Chapter 3. Code contributions

https://git-scm.com/book/en/Git-Tools-Submodules
https://www.openmicroscopy.org/support/

OME Contributing Developer

3.8 Examples of contribution templates

There are any number of other projects which have set up similar practices for code contributions. If you would like to
read more on the rationale, please see:

• https://incubator.apache.org/

• https://www.apache.org/foundation/how-it-works.html

See also:
https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

Best practices for git commit message formatting

https://en.wikipedia.org/wiki/Technical_debt
Wikipedia article on Technical debt

https://prettier.io/docs/en/why-prettier.html
Benefits of using an auto-formatter to avoid debates on style

3.8. Examples of contribution templates 25

https://incubator.apache.org/
https://www.apache.org/foundation/how-it-works.html
https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
https://en.wikipedia.org/wiki/Technical_debt
https://prettier.io/docs/en/why-prettier.html

OME Contributing Developer

26 Chapter 3. Code contributions

CHAPTER

FOUR

CONTRIBUTOR LICENSE AGREEMENT

Similarly to other projects like the Apache Software Foundation or the Python Software Foundation, OME uses a
Contributor License Agreement (CLA) to accept code contributions. This is a legal document in which a contributor
states that they are entitled to contribute their work to the project and are willing to have it used in distributions and
derivative works. The CLA also ensures that once a contributor has provided a contribution, they cannot try to withdraw
permission for its use at a later date. People and companies can therefore use that software, confident that they will not
be asked to stop using pieces of the code at a later date.

To enter the agreement, please the CLA form, fill your full name, email address, the GitHub username under
which you will make your contributions, date and sign the document. Finally, send the completed form to contrib-
utors@openmicroscopy.org.

27

https://www.apache.org/licenses/contributor-agreements.html
https://www.python.org/psf/contrib/contrib-form/

OME Contributing Developer

28 Chapter 4. Contributor License Agreement

CHAPTER

FIVE

TEAM COMMUNICATION

For anyone completely new to the project, it is most important to know how to get plugged in. There is a fairly extensive
amount of communication flying around related to the project, and being able to find and track it may take some time.

5.1 Instant messaging and video conferencing

On a day-to-day level, the team meets in a Slack chatroom. Slack can be used in your internet browser or via an app;
you will be invited to join the team by an admin.

The daily stand-up meeting is managed via the ‘#general’ channel, with notes in google docs that are edited throughout
the day as people complete the tasks assigned to them.

Slightly less frequently, members of the team meet on Zoom for voice discussions. These meetings are organized as
needed, but should provide feedback where appropriate (tickets, notes, etc).

5.1.1 Other IM tools

Slack is the only IM tool used by the entire OME team. Some team members do also use IRC (#ome on irc.freenode.net)
and may provide support via that channel but in general, all external requests for help are best submitted and dealt with
via the forums so they are available for the whole community. In particular, the various Gitter channels associated with
OME projects on GitHub are not routinely monitored and responded to.

5.2 Trac

Note: The team is increasingly moving away from Trac and towards using Trello, especially for managing ‘story’-level
items, documentation and testing.

The Trac server is available under https://trac.openmicroscopy.org/ome and uses your LDAP account for authentication.
Trac was used to record all tickets, but today is no longer actively used for new tasks and is mainly a record of older
tasks.

29

https://trac.openmicroscopy.org/ome

OME Contributing Developer

5.3 Trello

Trello is an online organizational tool used to manage “cards” arranged in “lists” on various subject-themed “boards”.
This is currently the team’s main internal planning tool for higher level development goals and for managing documen-
tation, testing, and the maintenance of our continuous integration tools.

You can request access to the openmicroscopy boards as an external collaborator. Sign up for a free account and then get
in touch with us to be added. We have now added a public OME organization to allow anyone to follow our development
progress (see Public-facing workflow for more information).

5.4 Developer documentation

The developer documentation is maintained under version control, generated using Sphinx and hosted on the OME
website.

Each section of the code base (OMERO, Bio-Formats) has a landing page that will direct you to all the developer
documentation that you might need. For example, the Developer page for OMERO is here.

30 Chapter 5. Team communication

https://www.trello.com
https://trello.com/ome
https://docs.openmicroscopy.org/latest/omero/developers/index.html

OME Contributing Developer

5.5 Jenkins: Continuous integration

Our Jenkins server is available here and also uses LDAP authentication. Jenkins provides a mechanism to run arbitrary
tasks (“jobs”) on one or more platforms after particular events (time of day, git push, etc.) These jobs build all of the
binaries released by the team, and also run automated testing.

5.6 Git and GitHub: Source code

Commits take place primarily on GitHub currently. To be aware of what is really going on, your best option is to
become familiar with Git, GitHub, and the repositories of all the team members. Information on doing that is available
in the Checking out the source code and Using Git.

5.7 Forums and mailing list

Feedback from the OME community happens primarily on the forum as well as GitHub.

You should be aware of and scan all threads on a fairly regular basis. The general rule is that requests from the com-
munity will be responded to by the next working day, where to the best of our ability, we keep the ‘working days’ and
time zones of the community in mind.

Where possible, the task of monitoring feedback is spread across the team. Forum questions are listed at the morning
stand-up meeting and can be checked off in the accompanying notes when dealt with to ensure nothing is ignored or
forgotten.

Anyone on the team should feel free to speak up to answer questions, but do try to verify the correctness of answers,
code samples, etc. before posting.

5.5. Jenkins: Continuous integration 31

https://jenkins.io
https://ci.openmicroscopy.org/
https://www.openmicroscopy.org/forums

OME Contributing Developer

As much information about our activities and decision processes should be made public as possible. For many items,
there is no reason to hide our process, but we do not go out of our way to make them public. For example, internally the
team often uses OmniGraffle documents to illustrate concepts, but these are kept privately to prevent any confusion.

5.8 Internal servers

There are a number of servers and services inside of the University of Dundee system that are used by the entire team.
You may not need access to all of them immediately, but it is good to know what is available in case you do.

• vpn.lifesci.dundee.ac.uk (LDAP-based) is necessary for securely accessing some of the following resources
(e.g. squig, jenkins)

• squig.openmicroscopy.org is the shared, team-wide repository for data which can be mounted if you are on
VPN or within the UoD system. It contains test data for various file formats.

• The OME QA system is an in-house system for collecting feedback from users, including failing files, stack
traces, etc. Like our community feedback, QA feedback should be turned into a ticket in a timely manner.

• Home directory / data repository on necromancer (SSH-based)

Note: For anyone who has been hired to work at the University of Dundee, you will be provided with a new start
tasklist which itemizes all the things that need to be done to get you set up in RL (building access, a chair, etc.).

32 Chapter 5. Team communication

http://qa.openmicroscopy.org.uk/
https://trello.com/c/GmuPPLAi/5-start-tasks
https://trello.com/c/GmuPPLAi/5-start-tasks

OME Contributing Developer

5.9 Google Docs

In addition to the services hosted in Dundee, the team also makes use of several Google resources due to the improved
real-time collaboration that they provide. A single Google collection “OME Docs” is made available to all team mem-
bers. Anything placed in the collection is automatically editable by everyone.

For example, the primary contact information for all team members is available in the DevContactList spreadsheet.

You can enable notifications on the spreadsheet so that you receive an email if any changes are made.

5.10 Meetings

Weekly meetings are held online with all members of the team. Notes are taken collaboratively in a public Google doc
in the “OME Docs > Notes > Tuesday meetings” collection. Anyone who missed the meeting is expected to review the
notes and raise any issues during the next meeting.

Periodically, a technical presentation is held during the weekly meeting. This can be used to either introduce an external
tool for suggested use by the team or as a peer review of in-progress work.

Mini group meetings can either be regularly scheduled (e.g. weekly) or on an as-needed basis. Notes from such
meetings should be recorded in gdocs or on Trello as appropriate and if necessary matters arising should be covered in
the weekly meeting for the rest of the team.

5.9. Google Docs 33

https://docs.google.com/spreadsheets/d/1oHHU1GdEQq03dDf1FzUe0xoEi1RK1BOLOaL0HhMAeEA/edit

OME Contributing Developer

34 Chapter 5. Team communication

CHAPTER

SIX

TEAM WORKFLOW SUMMARY

6.1 Development management

The OME team uses a Kanban-based approach to manage development work. New features, or bug fixes which require
significant amounts of work, are identified as priorities, listed in the ‘Priorities List’ board on Trello and then assigned
to a target release. As the particular release becomes imminent, cards assigned to it are moved to a dedicated release
board to allow all the current work to be tracked in one place. ‘Epic’ bodies of work may be managed via topic-based
boards.

Developers should focus on the tasks identified as priorities for the next point release or longer-term work towards the
next major version based on the outcome of team meetings. Constant communication is vital to ensure everyone is
working together to the same goals.

35

OME Contributing Developer

6.2 Public-facing workflow

To follow the development process from outside the project, you can view the milestones on the Trac Roadmap page and
Trac tickets for bugs and/or follow our new public Trello OME organization. Trello is now used for higher level planning
and will be of most interest to those concerned with new features and functionality (Trac is still used for individual
bug tracking). The ‘Getting Started’ board provides full instructions and an index of current boards, allowing you to
browse upcoming work for the next releases and topic-based ‘epic’ work plans.

You can sign up for a free Trello account to add comments and you need to be added to the organization (by commenting
on the ‘Add me, please’ card) to gain extra permissions e.g. to vote on or add cards.

For information about keeping up to date with OME projects, refer to the Team communication guide.

36 Chapter 6. Team workflow summary

https://trac.openmicroscopy.org/ome/milestone/
https://trac.openmicroscopy.org/ome/report/8
https://trello.com/ome

CHAPTER

SEVEN

ANSIBLE ROLES DEVELOPMENT

This document describes the conventions and process used by the OME team for developing, maintaining and releasing
its Ansible roles.

The set of rules and procedures described below applies to the official OME roles registered in https://github.com/ome/
ansible-roles.

7.1 Source code

The source code of an Ansible role should be maintained under version control using Git and hosted on GitHub under
the ome organization. The Git repositories should be named as ansible-role-<ROLENAME>.

Each directory layout should minimally follow the standard Ansible role layout including other files and folders for
testing and deployment. A typical role structure is shown below:

defaults/ # Default variables
handlers/ # Handlers
meta/ # Role metadata

main.yml # Dependencies and Galaxy metadata
molecule/ # Test
tasks/ # Main list of tasks to be executed

main.yml
templates/ # Role templates
.travis.yml # CI/deployment configuration file
README.md

7.2 Versioning

Ansible roles must follow the PEP440 scheme for versioning. Final releases must also be compliant with Semantic
Versioning i.e. a final version must be expressed as MAJOR.MINOR.PATCH where:

• the MAJOR version must be incremented when incompatible API changes are made,

• the MINOR version must be incremented when functionality is added in a backwards-compatible manner, and

• the PATCH version must be incremented when backwards-compatible bug fixes are made.

Final releases must be tagged with a tag matching the version i.e. MAJOR.MINOR.PATCH with no prefix.

37

https://www.ansible.com/
https://github.com/ome/ansible-roles
https://github.com/ome/ansible-roles
https://git-scm.com/
https://github.com
http://github.com/ome/
https://docs.ansible.com/ansible/2.6/user_guide/playbooks_reuse_roles.html#role-directory-structure
https://www.python.org/dev/peps/pep-0440/#semantic-versioning
https://semver.org
https://semver.org

OME Contributing Developer

7.3 Testing and Continuous Integration

For each Ansible role, a molecule folder should be configured allowing the testing to be tested using Molecule. One
or more scenarios should be configured using at least a Docker driver if possible. A generic molecule folder can be
initialized using the following command:

molecule init scenario -r ansible-role-<NAME> -s default -d docker

Continuous Integration of Ansible roles is performed using Travis CI.

Note: OME Ansible roles are getting progressively upgraded from Molecule 1.x to Molecule 2.x. New roles must be
configured using Molecule 2.x.

7.4 Distribution and support

All core OME Ansible roles should be deployed to Ansible Galaxy under the openmicroscopy organization. All roles
must support RHEL/CentOS 7 as a primary platform. New roles should also include Ubuntu 18.04 as a supported
platform whenever possible.

The Galaxy role name should be openmicroscopy.<ROLENAME>. For overriding the default name derived from the
GitHub repository name, the role_name variable should be set in meta/main.yml. For role names composed of
multiple words, note that the Galaxy import process will convert hyphens to underscores.

Ansible playbooks can consume these roles using a requirements.yml file - see https://github.com/ome/
prod-playbooks/blob/master/requirements.yml and https://github.com/IDR/deployment/blob/master/ansible/
requirements.yml for examples of such files.

The release of an Ansible role and its deployment to Galaxy release happens by triggering a role import in Galaxy
using the Travis integration on each release tag.

A PGP-signed tag of form x.y.z should be created for the released version using scc tag-release or git tag -s
and pushed to the upstream repository:

$ git tag -s x.y.z -m "<tag message>"
$ git push origin x.y.z

38 Chapter 7. Ansible roles development

https://molecule.readthedocs.io/
https://galaxy.ansible.com
https://galaxy.ansible.com/openmicroscopy/
https://github.com/ome/prod-playbooks/blob/master/requirements.yml
https://github.com/ome/prod-playbooks/blob/master/requirements.yml
https://github.com/IDR/deployment/blob/master/ansible/requirements.yml
https://github.com/IDR/deployment/blob/master/ansible/requirements.yml
https://docs.ansible.com/ansible/2.6/reference_appendices/galaxy.html#travis-integrations

CHAPTER

EIGHT

JAVA COMPONENTS (MAVEN)

This document describes the conventions and process used by the OME team for developing, maintaining and releasing
its Java components using Maven as their build system.

The set of rules and procedures described below applies to all the following Java libraries.

Component name GitHub URL groupId:artifactId
OME Common Java libary https://github.com/ome/

ome-common-java
org.openmicroscopy:ome-common

OME Data model https://github.com/ome/ome-model

org.openmicroscopy:ome-model
org.openmicroscopy:ome-xml
org.openmicroscopy:specification
org.openmicroscopy:ome-model-
doc

OME POI https://github.com/ome/ome-poi org.openmicroscopy:ome-poi
OME MDB Tools https://github.com/ome/

ome-mdbtools
org.openmicroscopy:ome-mdbtools

OME Stubs https://github.com/ome/ome-stubs

org.openmicroscopy:ome-stubs
org.openmicroscopy:lwf-stubs
org.openmicroscopy:mipav-stubs

OME Metakit https://github.com/ome/
ome-metakit

org.openmicroscopy:metakit

Note: Some of the historical monolithic Java projects, including Bio-Formats and OMERO, do not strictly comply
with these guidelines yet. As the project evolves and components are migrated, any new Java repository should follow
this set of rules.

39

https://maven.apache.org/
https://github.com/ome/ome-common-java
https://github.com/ome/ome-common-java
https://github.com/ome/ome-model
https://github.com/ome/ome-poi
https://github.com/ome/ome-mdbtools
https://github.com/ome/ome-mdbtools
https://github.com/ome/ome-stubs
https://github.com/ome/ome-metakit
https://github.com/ome/ome-metakit

OME Contributing Developer

8.1 Conventions

8.1.1 Source code and build system

The source code of a Java library should be maintained under version control using Git and hosted on GitHub.

Maven should be used as the primary build system. The directory layout should follow the standard Maven layout i.e.
in the case of a single-module project:

pom.xml
src/
main/
java/
<package>

test/
main/
java/
<package>

Additionally, the top-level pom.xml should be structured according to the Maven guidelines.

See also:
Using Git

8.1.2 Development

Java components use Semantic Versioning i.e. given a version number MAJOR.MINOR.PATCH, increment the:

• MAJOR version when you make incompatible API changes,

• MINOR version when you add functionality in a backwards-compatible manner, and

• PATCH version when you make backwards-compatible bug fixes.

In between releases the version is bumped to the next SNAPSHOT version.

Code contributions should follow the guidelines highlighted in Code contributions.

8.1.3 Distribution

All the release artifacts for the repositories listed above should be deployed to the Central Repository according to the
process described in the next section.

8.2 Release process

8.2.1 Maintainer prerequisites

It is important to get familiar with the OSSRH guide and especially the Maven section for performing a release deploy-
ment.

To be able to maintain a Java component, a developer must:

• have a GitHub account and have push rights to the GitHub source code repository

40 Chapter 8. Java components (Maven)

https://git-scm.com/
https://github.com
https://maven.apache.org/
https://maven.apache.org/developers/conventions/code.html
https://semver.org
https://central.sonatype.org/pages/ossrh-guide.html
https://central.sonatype.org/pages/apache-maven.html
https://central.sonatype.org/pages/apache-maven.html
https://github.com

OME Contributing Developer

• have a Sonatype account and be registered as a maintainer of the org.openmicroscopy repository (JIRA issues
should be opened for each developer)

• have a valid PGP key for signing the tags and the JARs

8.2.2 Release strategies

There are different strategies to release a Maven component. At the moment we are pushing 2 successive commits (or
Pull Requests) to the master branch. The first commit/Pull Request bumps the version number to the release version
and is used for generating the release while the second commit bumps the version to the next development cycle.

See also:
https://imagej.net/Development_Lifecycle

A section describing approaches which OME might be considering.

8.2.3 Release preparation

The first step of the Java component release is to prepare a release candidate on the GitHub and Sonatype repositories.

The first operation to perform a Maven release is to bump the version out of SNAPSHOT either via editing the pom.xml
manually or using the Maven versions plugin:

$ mvn versions:set -DnewVersion=x.y.z -DgenerateBackupPoms=false
$ git add -u .
$ git commit -m “Bump release version to x.y.z”

Additionally, a PGP-signed tag should be created for the released version e.g. using scc tag-release or more simply
git tag -s:

$ scc tag-release -s x.y.z --prefix v

Push the master branch and the tag to your fork for validation by another member of the team:

$ git push <fork_name> master
$ git push <fork_name> vx.y.z

Once you have updated all the versions and ensured that your build passes without deployment you can perform the
deployment by using the release profile with:

$ mvn clean deploy -P release
Potentially add -D gpg.keyname=keyname if desired.

This will upload the artifacts to a staging Sonatype repository and perform all the validation steps. The uploaded
artifacts can be examined at https://oss.sonatype.org/content/repositories/orgopenmicroscopy-xxxx/ where xxxx is an
number incremented for each release.

8.2. Release process 41

https://www.sonatype.com/
https://imagej.net/Development_Lifecycle
https://github.com
https://www.sonatype.com/

OME Contributing Developer

8.2.4 Release promotion

At the moment all Java components use the Nexus Staging Maven plugin with the autoReleaseAfterClose option set
to false. A separate promotion step is necessary for releasing the component to the Sonatype releases repository. This
promotion can happen either via the Sonatype UI using the Release button or using the release phase of the nexus-
staging plugin:

$ mvn nexus-staging:release -P release

See the ‘Manually Releasing the Deployment to the Central Repository’ section of the Apache Maven guide for more
instructions. You should be able to find the staged repository by visiting https://oss.sonatype.org/#stagingRepositories
and searching for “org.openmicroscopy”.

The rsync to Central Maven and the update of Maven search usually happen within a couple of hours but the components
are accessible beforehand.

Once the tag is validated, the master branch and the tag can also be pushed to the organization repository together:

$ git push origin vx.y.z
$ git push origin master

8.2.5 Next development version

Then finally restore the new development version using e.g. the Maven versions plugin again:

Where w == z+1
$ mvn versions:set -DnewVersion=x.y.w-SNAPSHOT -DgenerateBackupPoms=false
$ git add -u .
$ git commit -m “Bump release version to x.y.w-SNAPSHOT”
$ git push origin master

8.2.6 Javadoc

At the moment, we use the service provided https://javadoc.io/ for public hosting of the Javadoc. For each release to
Maven Central, the new Javadoc should be automatically deployed within 24h. It is possible to trigger the generation
of the Javadoc by visiting the URL.

42 Chapter 8. Java components (Maven)

https://central.sonatype.org/pages/apache-maven.html
https://oss.sonatype.org/#stagingRepositories
https://javadoc.io/

CHAPTER

NINE

JAVA COMPONENTS (GRADLE)

This document describes the conventions and process used by the OME team for developing, maintaining and releasing
its Java components using Gradle as their build system. The set of rules and procedures described below applies to all
the submodules of https://github.com/ome/omero-build as well as https://github.com/ome/omero-gradle-plugins/.

See also:
Java components (Maven)

Conventions and process for maintaining the OME Java Components using Maven

9.1 Conventions

9.1.1 Source code and build system

The source code of the components is maintained under version control using Git and hosted on GitHub.

Gradle is the primary build system. The directory layout should follow the standard Maven layout i.e. in the case of a
single-module project:

.github/
workflows/ # GitHub actions workflow

src/
main/ # Component source

test/
main/

CHANGELOG.md
LICENSE.txt
README.md
build.gradle
settings.gradle

Additionally, a publish.gradle might exist allowing to declare some publishing tasks.

See also:
Using Git

43

https://gradle.org/
https://github.com/ome/omero-build
https://github.com/ome/omero-gradle-plugins/
https://git-scm.com/
https://github.com
https://gradle.org/

OME Contributing Developer

9.1.2 Development

Server components follow Semantic Versioning i.e. given a version number MAJOR.MINOR.PATCH, increment the:

• MAJOR version when you make incompatible API changes,

• MINOR version when you add functionality in a backwards-compatible manner, and

• PATCH version when you make backwards-compatible bug fixes.

In between releases the version is bumped to the next SNAPSHOT version.

Code contributions should follow the guidelines highlighted in Code contributions.

9.1.3 Distribution

All the release artifacts for the repositories listed above should be deployed to the OME Artifactory according to the
process described in the next section.

9.2 Release process

To make a new component release, after merging all contributions, on the master branch, the version defined in build.
gradle must be moved out of SNAPSHOT and set to the target version. Release notes described the major changes
should also be added to CHANGELOG.md.

After committing the changes, a PGP-signed tag must be created for the released version using git tag -s:

$ git tag -s -m "Tag version x.y.z" vx.y.z:

The version should then be set to the next SNAPSHOT version in build.gradle and the changes committed to the
master branch.

Both the master branch as well as the tag must be pushed upstream:

$ git push origin master vx.y.z

This will trigger two GitHub Actions builds and the generated artifacts will be uploaded to the OME Artifactory. All
builds from the master branch are expected to be snapshots and uploaded to the ome.snapshots repository. All tag
builds are expected to be full releases and uploaded to the ome.staging repository.

Once the artifacts are uploaded, the release artifacts need to be promoted from ome.staging to ome.releases by logging
into https://artifacts.openmicroscopy.org/, going to the Artifacts tab, selecting the ome.staging repository and choosing
the Move Content action.

44 Chapter 9. Java components (Gradle)

https://semver.org
https://artifacts.openmicroscopy.org/

CHAPTER

TEN

C++ COMPONENTS

This document describes the conventions and process used by the OME team for developing, maintaining and releasing
its C++ components.

The set of rules and procedures described below applies to all the following C++ libraries.

Component name GitHub URL CMake project name
OME Common C++ https://github.com/ome/ome-common-cpp ome-common
OME Data Model* https://github.com/ome/ome-model ome-model
OME Files C++ https://github.com/ome/ome-files-cpp ome-files-cpp
OME Qt widgets https://github.com/ome/ome-qtwidgets ome-qtwidgets
OME CMake Superbuild https://github.com/ome/ome-cmake-superbuild ome-cmake-superbuild
OME Files Performance https://github.com/ome/ome-files-performance ome-files-performance
OME Files Python bindings† https://github.com/ome/ome-files-py ome-files-py

*
Contains both Java and C++ code - see Java components (Maven)

†
Contains both Python and C++ code

10.1 Conventions

10.1.1 Source code and build system

The source code of a C++ library should be maintained under version control using Git and hosted on GitHub.

CMake should be used as the primary build system. There is no standard CMake directory layout. C++-only compo-
nents like ome-common-cpp use a flattened directory layout:

cmake/
CMakeLists.txt
docs/ If applicable
sphinx/
doxygen/

lib/
test/

Components containing both Java and C++ code like ome-model organize the C++ sources according to the Maven-
recommended layout i.e.:

45

https://github.com/ome/ome-common-cpp
https://github.com/ome/ome-model
https://github.com/ome/ome-files-cpp
https://github.com/ome/ome-qtwidgets
https://github.com/ome/ome-cmake-superbuild
https://github.com/ome/ome-files-performance
https://github.com/ome/ome-files-py
https://git-scm.com/
https://github.com
https://cmake.org/
https://github.com/ome/ome-common-cpp
https://github.com/ome/ome-model

OME Contributing Developer

<module>/src/main/cpp Contains the C++ code
<module>/src/main/java Contains the Java code

Additionally, header files should be maintained alongside the source files.

10.1.2 Development

C++ components use Semantic Versioning i.e. given a version number MAJOR.MINOR.PATCH, increment the:

• MAJOR version when you make incompatible API changes,

• MINOR version when you add functionality in a backwards-compatible manner, and

• PATCH version when you make backwards-compatible bug fixes.

Code contributions should follow the guidelines highlighted in Code contributions.

10.1.3 Distribution

All the C++ sources and binaries are hosted on the OME downloads according to the process described in the next
section.

10.2 Release process

10.2.1 Maintainer prerequisites

To be able to maintain a C++ component, a developer must:

• have a GitHub account and have push rights to the GitHub source code repository

• have a valid PGP key for signing the tags

10.2.2 Source release

The first step of the C++ component release is to prepare a source release from the Git repository.

Prior to a source release, a PR should be opened and merged to:

• review the release-version variable in CMakeLists.txt and drop the # unreleased comment

• update the top-level NEWS.md if it exists with the list of changes and the release date

A PGP-signed tag should be created for the released version e.g. using scc tag-release or more simply git tag
-s:

$ scc tag-release -s x.y.z --prefix v

Push the master branch and the tag to your fork for validation by another member of the team:

$ git push <fork_name> master
$ git push <fork_name> vx.y.z

Once the tag is created, run the <COMPONENT>-release job under the https://ci.openmicroscopy.org/view/Release
view tab. This job will create an archive of the repository using git archive:

46 Chapter 10. C++ components

https://semver.org
https://ci.openmicroscopy.org/view/Release

OME Contributing Developer

$ git archive -v --format=tar "--prefix=${project}-${version}/" -o "${dest}/${project}-$
→˓{version}.tar" "${tag}"
$ xz "{dest}/${project}-${version}.tar"
$ git archive -v --format=zip "--prefix=${project}-${version}/" -o "${dest}/${project}-$
→˓{version}.zip" "${tag}"

and copy the source archives under https://downloads.openmicroscopy.org/<component>/<version>.

10.2.3 Next development version

Once the release is accepted, the version number of release-version in CMakeLists.txt should be incremented to the
next patch number i.e. x.y.z+1 and a suffixed with an # unreleased comment. If a top-level NEWS.md file exists,
an entry should be added for the next patch release.

See also:
https://github.com/ome/ome-common-cpp/pull/55

Example Pull Request incrementing the patch number of ome-common-cpp and updating NEWS.md following
the 5.5.0 source release

10.2. Release process 47

https://github.com/ome/ome-common-cpp/pull/55

OME Contributing Developer

48 Chapter 10. C++ components

CHAPTER

ELEVEN

OME DEVELOPMENT TOOLS

The following sections summarize the main tools maintained and used internally for the development of OMERO and
Bio-Formats. Note this is not an exhaustive list of all tools used in the project.

11.1 Development tools: maintenance

Most of the development tools used internally by the OME project are Python-based and hosted on PyPI. Their source
code is on GitHub.

11.1.1 Maintainer prerequisites

To be able to maintain a Python development tool, a developer must:

• have a GitHub account and have push rights to the GitHub source code repository

• have a valid PGP key for signing the tags

11.1.2 Release process

The first operation to perform while releasing a project is to create a signed tag locally:

$ cd <project>
$ git tag -s vx.y.z

The last command will create a tag with the default v prefix, i.e. vx.y.z.

Push the signed tag to the source code repository to trigger the upload to PyPI via GitHub action:

$ git push origin vx.y.z

49

https://pypi.org
https://pypi.org

OME Contributing Developer

11.2 Code management: scc

scc is a Python library with a set of utility commands used for code management and used in the OME Continuous
integration. More information can be found in the Python package page or in the source code page.

If you find a bug or if you want an additional feature to be implemented, please open an issue.

11.2.1 Installation

The scc tools are a set of Python based utility programs. The tools suite can be installed using pip:

$ pip install -U scc

This command will install and/or upgrade the PyGithub and yaclifw package dependencies. If the version of Python
installed is older than 2.7, this may also install the argparse package.

11.2.2 Github connection

Most of the scc commands instantiate a Github connection using the PyGithub package. GitHub strongly recommends
to turn on two-factor authentification (2FA), see About Two-Factor Authentication for more details. If 2FA is activated,
the only way to use scc commands creating a GitHub connection is to create an OAuth token, see Creating an access
token for command-line use for details on how to create Personal Access Tokens via the GitHub interface. This token
can then be stored in the global Git configuration file:

git config --global github.token REPLACE_BY_PERSONAL_ACCESS_TOKEN

Unless the --token option is passed to the scc command, the command first looks for the github.token specified in
the git config file and, if found, uses this token to connect to GitHub:

$ scc merge master --info -v
2013-01-16 22:03:49,633 [scc.config] DEBUG Found github.token
...

If no token is found, the command looks for a github.user in the git config file and, if found, uses this username to
connect to Github:

$ scc merge master --info -v
2013-01-16 22:06:00,256 [scc.config] DEBUG Found github.user
Enter password for https://github.com/sbesson:

Note: The password to be entered here is the GitHub password. Connecting using the GitHub username/password is
NOT possible if 2FA has been activated.

Finally, if no token or user is found, both the GitHub username and password are queried at the prompt:

$ scc merge master --info -v
github.token and github.user not found.
See `scc token` for simpifying use.
Username or token: sbesson
Enter password for https://github.com/sbesson:

50 Chapter 11. OME development tools

https://pypi.org/project/scc
https://github.com/ome/snoopycrimecop
https://github.com/ome/snoopycrimecop/issues
https://www.python.org
https://help.github.com/articles/about-two-factor-authentication/
https://help.github.com/articles/creating-an-access-token-for-command-line-use/
https://help.github.com/articles/creating-an-access-token-for-command-line-use/

OME Contributing Developer

11.2.3 scc merge

Merge all the PRs based on specified branch matching the input filters including all submodules.

Description

Filters of different types can be specified and combined to include and exclude a set of PRs in the merge command.
Each filter needs to be formatted as key:value. If no key but only a value is specified, it is assumed the filter is a label
filter (see below). These filters can be passed to an scc merge --include or scc merge --exclude option.

The available filter types are described below:

• Label filters can be specified using the label key i.e. label:<LABEL>. This filter type will match a Pull Request
if one of the following conditions is met:

1. a label named <LABEL> is applied to the Pull Request

2. the Pull Request description contains a line starting with --<LABEL>

3. one of the Pull Request comments contains a line starting with --<LABEL>. Note this comment needs to
be written by one of the public members of the organization owning the upstream repository.

• User filters can be specified using the user key i.e. user:<USER>. This filter type will select a Pull Request if
it has been opened by the user USER. Additionally, two special user values are allowed:

1. the #org value will match all PRs opened by public members of the organization of the upstream repository

2. the #all value will match all PRs opened by any user

• PR filters can be specified using the pr key i.e. pr:<NUMBER>. This will select Pull Requests whose ID matches
the input number. The form #number is also recognized as a PR filter. For repositories containing submodules,
it is possible to filter submodule PRs using user/repo#number.

Arguments

The first argument is the name of the base branch of origin, e.g.:

$ scc merge develop

--comment

Add a comment to the PR if there is a conflict while merging the PR

$ scc merge develop --comment

--default <filterset>, -D <filterset>

Specify the default set of filters to use

Three filter sets are currently implemented: none, org and all. The none filter set has no preset filter. The
org filter set uses user:#org and label:include as the default include filters and label:exclude and
label:breaking as the default exclude filters. The all filter set uses user:#all as the default include fil-
ters.

Default: org

--exclude <filter>, -E <filter>

Exclude PR by filter (see filter semantics above):

11.2. Code management: scc 51

OME Contributing Developer

$ scc merge develop -E label:l1 -E user:u1 -E #45 -E org/repo#40

--include <filter>, -I <filter>

Include PR by filter (see filter semantics above):

$ scc merge develop -I label:l1 -I user:u1 -I #45 -I org/repo#40

--check-commit-status <status>, -S <status>

Exclude PR based on the status of the last commit

Three options are currently implemented: none, no-error and success-only. By default (none), the status
of the last commit on the PR is not taken into account. To include PRs which have a successful status only, e.g.
PRs where the Travis build is green, use the success-only option:

$ scc merge develop -S success-only

To exclude all PRs with an error or failure status, use the no-error option:

$ scc merge develop -S no-error

--info

Display the candidate PRs to merge but do not merge them

$ scc merge develop --info

--push <branchname>

Push the locally merged branch to Github

$ scc merge develop --push my-merged-branch

--reset

Recursively reset each repository to the HEAD of the base branch

$ scc merge develop --reset

--shallow

Merge the PRs for the top-level directory only, excluding submodules:

$ scc merge develop --shallow

--remote <remote>

Specify the name of the remote to use as the origin. Default: origin:

$ scc merge develop --remote gh

As a concrete example, the first step of a merge job is calling the following merge command:

$ scc merge master --no-ask --reset --comment --push merge_ci

52 Chapter 11. OME development tools

OME Contributing Developer

Use cases

The basic command will use the default filters and merge all PRs opened against master by any public members of
the organization, include any PR labeled as include and exclude any PR labeled as breaking or exclude:

$ scc merge master

The following command overrides the default set of filters and will only merge PRs opened against master labeled as
my_label:

$ scc merge master -Dnone -Ilabel:my_label

The following command overrides the default set of filters and will merge all PRs opened against master by public
members of the organization, include any PR labeled with my_label and exclude any PR labeled as exclude:

$ scc merge master -Dnone -Iuser#org -Ilabel:my_label -Elabel:exclude

Changed in version 0.3.0: Added default values for --include and --exclude options.

Changed in version 0.3.8: Added --shallow and --remote options.

Changed in version 0.4.0: Added --check-commit-status option.

11.2.4 scc travis-merge

Merge PRs in a Travis environment, using the PR comments to generate the merge filters.

$ scc travis-merge

This command internally defines all the filter options exposed in scc merge.

The target branch is read from the base of the PR, the scc merge --default option is set to none meaning no PR is
merged by default and no default scc merge --exclude option is defined.

The scc merge --include filter is determined by parsing all the PR comments lines starting with --depends-on.

To include a PR from the same GitHub repository, use the PR number prepended by #. For instance, to include PR 67
in the Travis build, add a comment line starting with --depends-on #67 to the PR.

To include a PR from a submodule, use the PR number prepended by submodule_user/submodule_name#. For
instance, to include PR 60 of bioformats in the Travis build, add a comment line starting with --depends-on
openmicroscopy/bioformats#60 to the openmicroscopy PR.

Note: The scc travis-merge command works solely for Pull Requests’ Travis builds.

11.2.5 scc update-submodules

Update the pointer of all submodules based on specified branch.

The first argument is the name of the base branch of origin, e.g.:

$ scc update-submodules develop

11.2. Code management: scc 53

OME Contributing Developer

--push <branchname>

Push the locally merged branch to Github and open a PR against the base branch:

$ scc merge develop --push submodules_branch

--no-pr

Combined with --push option, push the locally merged branch to Github but skip PR opening:

$ scc merge develop --push submodules_branch --no-pr

--remote <remote>

Specify the name of the remote to use as the origin (default: origin):

$ scc update-submodules develop --remote gh

11.2.6 scc rebase

Rebase a PR (open or closed) onto another branch and open a new PR.

The first argument is the number of the PR to rebase and the second argument is the name of the branch onto which
the PR should be rebased:

$ scc rebase 142 develop

Assuming the head branch used to open the PR 142 was called branch_142, this command will rebase the tip of
branch_142 onto origin/develop, create a new local branch called rebased/develop/branch_142, push this branch
to Github and open a new PR. Assuming the command opens PR 150, to facilitate the integration with scc check-prs,
a --rebased-to #150 comment is added to PR 142 and a --rebased-from #142 comment is added to the PR 150.
Finally, the command will switch back to the original branch prior to rebasing and delete the local rebased/develop/
branch_142.

Note: By default, scc rebase uses the branches of the origin remote to rebase the PR. To specify another remote,
use the --remote option.

--no-pr

Skip the opening of the PR

$ scc rebase 142 develop --no-pr

--no-delete

Do not delete the local rebased branch

$ scc rebase 142 develop --no-delete

--remote <remote>

Specify the name of the remote to use for the rebase (default: origin)

$ scc rebase 142 develop --remote snoopycrimecop

54 Chapter 11. OME development tools

OME Contributing Developer

--continue

Re-run the command after manually fixing conflicts

If scc rebase fails due to conflict during the rebase, you will end up in a detached HEAD state.

If you want to continue the rebase operation, you will need to manually fix the conflicts:

fix files locally
$ git add conflicting_files # add conflicting files
$ git rebase --continue

This conflict solving operation may need to be repeated multiple times until the branch is fully rebased.

Once all the conflicts are resolved, call scc rebase with the --continue option:

$ scc rebase --continue 142 develop

Depending on the input options, this command will perform all the steps of the rebase command (Github pushing,
PR opening) skipping the rebase part.

Alternatively, you can abort the rebase and switch to your previous branch:

$ git rebase --abort
$ git checkout old_branch

Changed in version 0.3.10: Automatically add --rebased-to and --rebased-from comments to the source and
target PRs.

11.2.7 scc check-prs

Compare two development branches and check that PRs merged in one branch have been merged to the other.

The basic workflow of the scc check-prs command is the following:

• list all first-parent merge commits for each branch including git notes referenced as see_also/other_branch
where other_branch is the name of the branch to check against.

• exclude all merge commits with a note containing either “See gh-” or “n/a”

• for each remaining merge commit, parse the PR number and look into the PR body/comments for lines starting
with --rebased-to, --rebased-from or --no-rebase.

Additionally, for each line of each PR starting with --rebased-to or --rebased-from, the existence of a matching
line is checked in the corresponding source/target PR. For instance, if PR 70 has a --rebased-from #67 line and a
--rebased-from #66 line, then both PRs 66 and 67 should have a --rebased-to #70 line.

This command requires two positional arguments corresponding to the name of the branch of origin to compare:

$ scc check-prs dev_4_4 develop

--shallow

Check PRs in the top-level directory only, excluding submodules:

$ scc check-prs dev_4_4 develop --shallow

--remote <remote>

Specify the name of the remote to use as the origin (default: origin):

11.2. Code management: scc 55

OME Contributing Developer

$ scc check-prs dev_4_4 develop --remote gh

--no-check

Do not check links between rebased comments:

$ scc check-prs dev_4_4 develop --no-check

New in version 0.3.10: Added support for body/comment parsing and --rebased-to/from linkcheck

Changed in version 0.4.0: Improved command output and added support for submodule processing

Changed in version 0.5.0: Renamed command

11.2.8 scc version

Return the version of the scc tools:

$ scc version
0.3.0

New in version 0.2.0.

11.2.9 scc deploy

Deploy a website update using file symlink replacement:

$ scc deploy folder

The goal of this command is to enable overwriting of deployed doc content and allow for “hot-swapping” content served
by Apache without downtime and HTTP 404s.

--init

Prepare folder for symlink replacement. Should only be run once

$ scc deploy folder --init

New in version 0.3.1.

The hudson jobs ending with release-docs and OMERO-docs-internal deploy the documentation artifacts to necro-
mancer. The target directory (sphinx-docs) is controlled by the hudson:hudson user, so all file system operations are
allowed. Each job has the target directory configured in the SSH publisher target directory property. After deployment
has happened to a temporary directory, a series of symlink moves happens making sure that the symlink points to the
updated content.

56 Chapter 11. OME development tools

https://gist.github.com/hussfelt/3931118#file-symlink-replacement-md

OME Contributing Developer

11.2.10 scc check-status

Check the status of the Github API:

$ scc check-status && echo "Passing"
Passing

-n <N>

Display N last status messages from Github API history:

$ scc check-status -n 4
2013-11-04 13:40:48 (minor) We're investigating an increase in error responses from␣
→˓the API.
2013-11-04 14:33:55 (good) Everything operating normally.
2013-11-05 12:59:50 (minor) We're investigating reports of an increase in 502s from␣
→˓the GitHub API.
2013-11-05 13:07:15 (good) Everything operating normally.

New in version 0.4.0.

11.3 OME administration: omego

omego is a Python library with a set of utility commands used for managing the installation and administration of OME
applications like OMERO. More information can be found in the Python package page or in the source code page.

If you find a bug or if you want an additional feature to be implemented, please open an issue.

11.3.1 Installation

The omego tools are a set of Python based utility programs. The tools suite can be installed using pip:

$ pip install -U omego

This command will install and/or upgrade the yaclifw package dependency. If the version of Python installed is older
than 2.7, this may also install the argparse package.

11.4 OME development platform: devspace

Devspace is a Continuous Integration tool managed by Jenkins CI providing an automation framework that runs re-
peated jobs. The default deployment initializes a Jenkins CI master with a predefined set of jobs. More information
can be found in the source code page.

If you find a bug or if you want an additional feature to be implemented, please open an issue.

Running and maintaining Devspace requires:

• Docker engine https://docs.docker.com/.

Optionally a brief understanding of Ansible, Ansible inventory, and Ansible playbooks.

11.3. OME administration: omego 57

https://pypi.org/project/omego
https://github.com/ome/omego
https://github.com/ome/omego/issues
https://www.python.org
https://github.com/ome/devspace
https://github.com/ome/devspace/issues
https://docs.docker.com/
https://docs.ansible.com/ansible/2.6/user_guide/intro_getting_started.html
https://docs.ansible.com/ansible/2.6/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/2.6/user_guide/playbooks.html

OME Contributing Developer

11.4.1 Installation

Manual

Install following prerequisites:

• Docker engine https://docs.docker.com/engine/installation/

• Docker compose

$ pip install docker-compose

Checkout git repository and run

$ docker-compose -f docker-compose.yml up --build

OpenStack

This is an example of how to provision and deploy Devspace using ansible on openstack. Check out management tools
and run:

$ source tenancy.rc
$ cd infrastructure/ansible
$ ansible-playbook os-devspace.yml -e vm_name=devspace-test -e vm_key_name=your_key
$ ansible-playbook -l devspace-test -u centos devspace.yml

To deploy devspace from custom branch, first set up vars:

omero_branch: develop
snoopy_dir_path: "/path/to/snoopy"

git_repo: "https://github.com/user_name/devspace.git"
version: "your_branch"

58 Chapter 11. OME development tools

https://docs.docker.com/engine/installation/
https://github.com/ome/devspace

CHAPTER

TWELVE

OME DEPLOYMENT TOOLS

This section describes deployment tools supported by the OME team. It is primarily designed for the core OME
developers who want to bring new or upgrade existing prerequisites. The following steps explain the connections
between basic repositories and the testing workflow.

Note: This section requires a brief understanding of Ansible and Docker engine https://docs.docker.com/.

12.1 Prerequisites locations

The list of OME prerequisites is stored in multiple git repositories, each of which is available from several locations.

12.1.1 OME Infrastructure

Infrastructure is provided to simplify deployment using Ansible.

The Infrastructure repository is available from:

• https://github.com/ome/infrastructure

Roles repositories are available in:

• https://github.com/ome?q=ansible-role

12.1.2 OMERO-install

OMERO installation scripts are provided to help new users with installing OMERO.server for the first time on a clean
system, and can be used as the basis for more advanced configurations.

The OMERO-install repository is available from:

• https://github.com/ome/omero-install

The OMEROWEB-install repository is available from:

• https://github.com/ome/omeroweb-install

59

https://docs.ansible.com/ansible/2.6/user_guide/intro_getting_started.html
https://docs.docker.com/
https://www.ansible.com
https://github.com/ome/infrastructure
https://github.com/ome?q=ansible-role
https://github.com/ome/omero-install
https://github.com/ome/omeroweb-install

OME Contributing Developer

12.2 Testing workflow

The testing environment is split into two tiers: developer and production testing platform.

12.2.1 Devspace - Continuous Integration (Dev Testing)

Continuous integration tools managed by Jenkins CI providing an automation framework that runs repeated jobs. The
default deployment initializes a Jenkins CI master with a predefined set of jobs.

The Devspace repository is available from:

• https://github.com/ome/devspace

Devspace Dockerfiles uses common devslave image. The Devslave repository is available from:

• https://github.com/ome/devslave-c7-docker

12.2.2 CI-master - Continuous Delivery (Production)

Production Continuous Delivery (CD) platform managed by Jenkins. More details about CI-master available on Con-
tinuous integration

12.3 How to add new/upgrade/remove old prerequisites

When the OME platform requires a new set of prerequisites all the above listed repositories may require updates.
Depends on the nature of packages developers must consider:

• infrastructure repository:

– adding new Ansible role in its own repo or update existing one https://github.com/ome?q=ansible-role

– adding complete Ansible playbook to Infrastructure

• adding new scripts installing appropriate package and its dependencies to OMERO-install or OMEROWEB-
install, that includes:

– updating Linux and Mac installation scripts

– updating documentation autogen

• deploying Devspace to test OMERO-install scripts, that includes:

– adding new Docker container if requires to support additional processes

– adjusting predefined Jenkins jobs

After successful testing new prerequisites can be proposed as a permanent adjustment to production CD.

Note: Any Python module that is distributed from Linux distro packages must be installed from RPM file. Python
modules only available on PyPI should be added as PIP requirement.

60 Chapter 12. OME deployment tools

https://github.com/ome/devspace
https://github.com/ome/devslave-c7-docker
https://jenkins.io
https://github.com/ome?q=ansible-role
https://pypi.org

OME Contributing Developer

12.4 Pre release testing

It is also very important to test all the dependencies before release to make sure sysadmin instructions are fully tested.
The easiest way to test is to use Devspace.

12.5 EXAMPLE

This example shows how to test and upgrade OMERO dependencies.

1. Open a PR against omero-install (e.g. install Pillow from RPM https://github.com/ome/omero-install/pull/129).

2. Upgrade base docker image using (e.g. https://github.com/ome/devslave-c7-docker/blob/master/Dockerfile#
L19) and open a PR against devslave-c7-docker.

Run https://ci.openmicroscopy.org/job/DOCKER-merge. Latest merge image will be released to Docker Hub.
For more details about configuring automated builds on Docker Hub, see https://docs.docker.com/docker-hub/
builds/.

3. Update devspace to use newly released container (e.g. https://github.com/ome/devspace/pull/63/files#
diff-296e14ae0dc392c7edd9369908467953).

4. Commit and push your changes to github (e.g. https://github.com/ome/devspace/pull/63), set your branch in
devspace ansible config and deploy.

If all tests are passing, above repositories should be tagged and tag should be propagated accordingly.

Note: We are working very hard to improve and simplify that process.

12.4. Pre release testing 61

https://github.com/ome/omero-install/pull/129
https://github.com/ome/devslave-c7-docker/blob/master/Dockerfile#L19
https://github.com/ome/devslave-c7-docker/blob/master/Dockerfile#L19
https://github.com/ome/devslave-c7-docker
https://ci.openmicroscopy.org/job/DOCKER-merge
https://hub.docker.com/r/snoopycrimecop/devslave-c7-docker/builds/
https://docs.docker.com/docker-hub/builds/
https://docs.docker.com/docker-hub/builds/
https://github.com/ome/devspace/pull/63/files#diff-296e14ae0dc392c7edd9369908467953
https://github.com/ome/devspace/pull/63/files#diff-296e14ae0dc392c7edd9369908467953
https://github.com/ome/devspace/pull/63

OME Contributing Developer

62 Chapter 12. OME deployment tools

CHAPTER

THIRTEEN

CONTINUOUS INTEGRATION

The OME project uses Jenkins as a continuous integration server. Bring up a web browser to access the OME Jenkins
server.

The following sections summarize the main continuous integration jobs used for the development of OMERO, Bio-
Formats and the OME documentation sets. Note this is not an exhaustive list of all jobs in the project. To know more
about a particular job, click on the Configure button on the left-side panel of the job window. This panel should also
include a GitHub button linking to the code repository the job is building from (alternatively, the console output for
the build will indicate where the changes are being fetched from).

13.1 Continuous integration branches and jobs

13.1.1 Versioning

OME uses semantic versioning as defined in https://semver.org. Each version number is identified as MA-
JOR.MINOR.PATCH where MAJOR is the major version number, MINOR the minor version number and PATCH
the patch version number. Additional pre-release labels are added as extensions of this version number, e.g. 4.4.0-rc1
or 5.0.0-beta1.

Major release
An increment of the MAJOR version or the MINOR version is typically considered as a major release in OME,
e.g. 5.0.0 or 5.1.0.

Point release (patch release)
An increment of the PATCH version is called a point (or patch) release in OME, e.g. 4.4.9.

13.1.2 Development branches

Most of the OME code is split between four repositories: openmicroscopy.git, bioformats.git, scripts.git, ome-
documentation.git. Each repository contains several development branches associated with development series:

• The “dev_5_y” branch(es) containing work on the current 5.y.x series.

• The “develop” branch containing work on the next major release series.

Note that only two branches are usually maintained simultaneously. With this workflow, it is possible to have a point
release immediately, while still working on more major releases by ensuring that (nearly) all commits that are applied
to dev_5_y are applied to develop in order to prevent regressions.

63

https://jenkins.io
https://ci.openmicroscopy.org/
https://ci.openmicroscopy.org/
https://semver.org
https://github.com/openmicroscopy/openmicroscopy
https://github.com/openmicroscopy/bioformats
https://github.com/ome/scripts
https://github.com/openmicroscopy/ome-documentation
https://github.com/openmicroscopy/ome-documentation

OME Contributing Developer

13.1.3 Labels

Labels are applied to PRs on GitHub under the “Issues” tab of each repository.

Each release series consists of PRs labeled according to the release version, which also matches the name of the branch
they will be merged into e.g. 5.1.x series PRs will be labeled as “dev_5_1” and be merged into the dev_5_1 branch.

Multiple labels are used in the PR reviewing process:

• the “include” label allows you to include a PR opened by a non-member of the OME organization in the merge
builds for review.

• the “exclude” label allows you to exclude a PR opened by any user from the merge builds.

• the “on hold” label allows you to signal that a PR should not be reviewed or merged, even though it is not excluded.

13.1.4 Job names

All core OME job names take the form COMPONENT-VERSION-TYPE-DESCRIPTION, where:

• COMPONENT refers to the core OME component, e.g. OMERO for OMERO or BIOFORMATS for Bio-Formats.

• VERSION is the MAJOR.MINOR version, e.g. 5.0 or 5.1.

• TYPE represents the source of the job and can take the following values:

– latest: build from the tip of the development branch, e.g. origin/dev_5_0;

– merge: build from the tip of the development branch with all PRs merged using scc merge with the org
default filter set;

– release: build from and optionally create a tag at the tip of a development branch, e.g. v5.0.1-rc4.

• DESCRIPTION describes the job via a set of dash-separated keywords, e.g. docs-autogen.

13.2 OMERO jobs

13.2.1 Deployments

The table below lists all the hostnames, ports and URLs of the OMERO.web clients of the deployment jobs described
above:

Se-
ries

OMERO.server
deployment
job

Hostname Port OMERO.web
deployment
job

Webclient

Merge OMERO-server merge-
ci.openmicroscopy.org

4064 OMERO-web https://merge-ci.openmicroscopy.
org/web/

64 Chapter 13. Continuous integration

https://merge-ci.openmicroscopy.org/web/
https://merge-ci.openmicroscopy.org/web/

OME Contributing Developer

13.2.2 Jobs

Job task Merge jobs
Merges the PRs and couple versions

OMERO-gradle-plugins-push
OMERO-build-push
OMERO-push
OMERO-insight-push
OMERO-matlab-push

Builds the OMERO artifacts

OMERO-gradle-plugins-build
OMERO-build-build
OMERO-build
OMERO-insight-build
OMERO-matlab-build

Deploy OMERO

OMERO-server
OMERO-web

Runs the OMERO integration tests OMERO-test-integration

OMERO-gradle-plugins-push
OMERO-build-push
OMERO-push
OMERO-insight-push
OMERO-matlab-push

These jobs merge all the PRs opened against the development branches and couple the component versions for
the following repositories:

• https://github.com/ome/omero-gradle-plugins

• https://github.com/ome/omero-build

• https://github.com/ome/openmicroscopy

• https://github.com/ome/omero-insight

• https://github.com/ome/omero-matlab

OMERO-gradle-plugins-build
OMERO-build-build
OMERO-build
OMERO-insight-build
OMERO-matlab-build

These jobs build the OMERO server components, the OMERO bundles and the OMERO clients from the inte-
gration branches created by the push jobs.

OMERO-server
This job deploys the server (see Deployments) created by OMERO-build.

OMERO-web
This job deploys the Web application (see Deployments) created by OMERO-build.

13.2. OMERO jobs 65

https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-gradle-plugins-push
https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-build-push
https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-push
https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-insight-push
https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-matlab-push
https://github.com/ome/omero-gradle-plugins
https://github.com/ome/omero-build
https://github.com/ome/openmicroscopy
https://github.com/ome/omero-insight
https://github.com/ome/omero-matlab
https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-gradle-plugins-build
https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-build-build
https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-build
https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-insight-build
https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-matlab-build
https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-server
https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-web

OME Contributing Developer

OMERO-test-integration
This job deploys an OMERO.server and runs the OMERO.java, OMERO.py and OMERO.web integration tests.

13.3 Bio-Formats jobs

Job task Merge jobs
Merge the PRs and couple versions BIOFORMATS-push
Build the Bio-Formats artifacts

BIOFORMATS-build
BIOFORMATS-image

Build the Bio-Formats documentation BIOFORMATS-linkcheck
Run the Bio-Formats non-regression tests BIOFORMATS-test-repo

BIOFORMATS-push
This job merges all the PRs opened against the development branch of https://github.com/ome/bio-formats-build
and couples the component versions

BIOFORMATS-build
BIOFORMATS-image

This job builds all the Bio-Formats artifacts using Maven and Ant

BIOFORMATS-linkcheck
This job runs the linkchecker on the Bio-Formats documentation

BIOFORMATS-test-repo
This job consumes the Docker image built by BIOFORMATS-image and runs the non-regression automated tests
against the curated QA repository

13.4 Documentation jobs

All documentation jobs are listed under the Docs view tab of Jenkins. A GitHub button in the left-side panel of the job
window links to the code repository the job is building from (alternatively, the console output for the build will indicate
where the changes are being fetched from).

More detail on how and where to edit OME documentation is available on the Editing the OME documentation page.

Job task OMERO 5.x series
Builds the OMERO documentation for review OMERO-docs

The Bio-Formats documentation jobs are described in the Bio-Formats jobs section.

The OME Model set is independent of the current OMERO/Bio-Formats version.

Job task
Review PRs opened against the OME Website WEBSITE-push
Review PRs opened against the Presentations website PRESENTATIONS-merge

66 Chapter 13. Continuous integration

https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-test-integration
https://merge-ci.openmicroscopy.org/jenkins/job/BIOFORMATS-push
https://github.com/ome/bio-formats-build
https://merge-ci.openmicroscopy.org/jenkins/job/BIOFORMATS-build
https://merge-ci.openmicroscopy.org/jenkins/job/BIOFORMATS-image
https://merge-ci.openmicroscopy.org/jenkins/job/BIOFORMATS-linkcheck
https://merge-ci.openmicroscopy.org/jenkins/job/BIOFORMATS-test-repo
https://ci.openmicroscopy.org/view/Docs

OME Contributing Developer

13.4.1 Configuration

For all jobs building documentation using Sphinx, the following environment variables are used:

• the Sphinx building options, SPHINXOPTS, is set to -Dsphinx.opts="-W"

• the release number of the documentation is set by OMERO_RELEASE, BF_RELEASE or by the relevant POM

• the source code links use SOURCE_USER and SOURCE_BRANCH

• for the Bio-Formats and OMERO sets of documentation, the name of the Jenkins job is set by JENKINS_JOB.

Note that the https://github.com/ome/sphinx_theme repository is no longer used, this hosted the theme to match the
old plone website.

13.4.2 OMERO 5.x series

The branch for the 5.x series of the OMERO documentation is develop.

OMERO-docs
This job is used to review the PRs opened against the develop branch of the OMERO 5.x documentation

1. Merges PRs using scc merge

2. Pushes the branch to https://github.com/snoopycrimecop/ome-documentation/tree/merge_ci

3. Runs make clean html to build the HTML Sphinx documentation

4. Runs make linkcheck

13.4.3 Jekyll websites

The following set of jobs is used to review or publish the content of the OME Jekyll websites.

WEBSITE-push
This job is used to review the PRs opened against the master branch of https://github.com/ome/www.
openmicroscopy.org

1. Merges PRs using scc merge and pushes the branch to https://github.com/snoopycrimecop/www.
openmicroscopy.org/tree/merge_ci

2. The GitHub Pages service deploys the staging website content under https://snoopycrimecop.github.io/
www.openmicroscopy.org/

PRESENTATIONS-merge
This job is used to review the PRs opened against the master branch of https://github.com/ome/presentations

1. Merges PRs using scc merge and pushes the branch to https://github.com/snoopycrimecop/presentations

2. The GitHub Pages service deploys the staging website content under https://snoopycrimecop.github.io/
presentations/

13.4. Documentation jobs 67

https://github.com/ome/sphinx_theme
https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-docs
https://github.com/snoopycrimecop/ome-documentation/tree/merge_ci
https://merge-ci.openmicroscopy.org/jenkins/job/WEBSITE-push
https://github.com/ome/www.openmicroscopy.org
https://github.com/ome/www.openmicroscopy.org
https://github.com/snoopycrimecop/www.openmicroscopy.org/tree/merge_ci
https://github.com/snoopycrimecop/www.openmicroscopy.org/tree/merge_ci
https://snoopycrimecop.github.io/www.openmicroscopy.org/
https://snoopycrimecop.github.io/www.openmicroscopy.org/
https://ci.openmicroscopy.org/job/PRESENTATIONS-merge
https://github.com/ome/presentations
https://github.com/snoopycrimecop/presentations
https://snoopycrimecop.github.io/presentations/
https://snoopycrimecop.github.io/presentations/

OME Contributing Developer

13.5 Release jobs

The following table lists the main Jenkins jobs used during the release process. All release jobs should be listed under
the https://ci.openmicroscopy.org/view/Release view.

Job task OMERO
Trigger the OMERO release jobs https://ci.openmicroscopy.org/job/

OMERO-DEV-release-trigger
Tags the OMERO source code repository https://ci.openmicroscopy.org/job/

OMERO-DEV-release-push
Build the OMERO download artifacts https://ci.openmicroscopy.org/job/OMERO-DEV-release
Generate the OMERO downloads page https://ci.openmicroscopy.org/job/

OMERO-DEV-release-downloads
Deploy the documentation for the decoupled repos-
itories

https://ci.openmicroscopy.org/job/
OMERO-DEV-release-artifacts

Job task Bio-Formats
Build the Bio-Formats download artifacts https://ci.openmicroscopy.org/job/BIOFORMATS-DEV-release

13.5.1 Bio-Formats

https://ci.openmicroscopy.org/job/BIOFORMATS-DEV-release
This job builds the Java downloads artifacts of Bio-Formats

1. Checks out the RELEASE tag of https://github.com/ome/bioformats

2. Builds Bio-Formats using clean release tools utils docs docs-sphinx dist-bftools
dist-matlab dist-octave test

3. Downloads the documentation artifacts from OME artifactory

4. Copies the build artifacts to a LDAP-protected folder under downloads.openmicroscopy.org

13.5.2 OMERO

OMERO-DEV-release-trigger
This job triggers the OMERO release jobs. Prior to running it, its variables need to be properly configured:

• RELEASE is the OMERO release number.

• ANNOUNCEMENT_URL is the URL of the forum release announcement and should be set to the value of the
URL of the private post until it becomes public.

• MILESTONE is the name of the Trac milestone which the download pages should be linked to.

1. Triggers OMERO-DEV-release-push

2. Triggers OMERO-DEV-release

See the build graph

OMERO-DEV-release-push
This job creates a tag on the develop branch

1. Runs scc tag-release $RELEASE and pushes the tag to the snoopycrimecop fork of openmicroscopy.git

68 Chapter 13. Continuous integration

https://ci.openmicroscopy.org/view/Release
https://ci.openmicroscopy.org/job/OMERO-DEV-release-trigger
https://ci.openmicroscopy.org/job/OMERO-DEV-release-trigger
https://ci.openmicroscopy.org/job/OMERO-DEV-release-push
https://ci.openmicroscopy.org/job/OMERO-DEV-release-push
https://ci.openmicroscopy.org/job/OMERO-DEV-release
https://ci.openmicroscopy.org/job/OMERO-DEV-release-downloads
https://ci.openmicroscopy.org/job/OMERO-DEV-release-downloads
https://ci.openmicroscopy.org/job/OMERO-DEV-release-artifacts
https://ci.openmicroscopy.org/job/OMERO-DEV-release-artifacts
https://ci.openmicroscopy.org/job/BIOFORMATS-DEV-release
https://ci.openmicroscopy.org/job/BIOFORMATS-DEV-release
https://github.com/ome/bioformats
https://ci.openmicroscopy.org/job/OMERO-DEV-release-trigger
https://ci.openmicroscopy.org/job/OMERO-DEV-release-trigger/lastSuccessfulBuild/BuildGraph
https://ci.openmicroscopy.org/job/OMERO-DEV-release-push
https://github.com/openmicroscopy/openmicroscopy

OME Contributing Developer

OMERO-DEV-release
This matrix job builds the OMERO components with Ice 3.6

1. Checks out the RELEASE tag of the snoopycrimecop fork of openmicroscopy.git

2. Builds the OMERO.server and the clients using :omero_source: OMERO.sh <docs/hudson/OMERO.sh>

3. Executes the release-hudson target for the ome.staging Maven repository

4. Copies the build artifacts to a LDAP-protected folder under downloads.openmicroscopy.org

5. Triggers OMERO-DEV-release-downloads

OMERO-DEV-release-downloads
This job builds the OMERO downloads page

1. Checks out the develop branch of https://github.com/ome/ome-release.git

2. Runs make clean omero

OMERO-DEV-release-artifacts
This job deploys the Javadoc and the slice2html documentation

1. Loops through omero-{model,common,romio,renderer,server,blitz,gateway-java}

2. Checks the latest version available on https://artifacts.openmicroscopy.org

3. Deploys the documentation in the respective directory

Documentation release jobs are documented on Documentation jobs.

13.5. Release jobs 69

https://ci.openmicroscopy.org/job/OMERO-DEV-release
https://github.com/openmicroscopy/openmicroscopy
https://ci.openmicroscopy.org/job/OMERO-DEV-release-downloads
https://github.com/ome/ome-release.git
https://ci.openmicroscopy.org/job/OMERO-DEV-release-artifacts
https://artifacts.openmicroscopy.org

OME Contributing Developer

70 Chapter 13. Continuous integration

CHAPTER

FOURTEEN

EDITING THE OME DOCUMENTATION

This guide assumes you are already familiar with Using Git and GitHub and only covers where to find the sources,
builds etc. you will need to edit and review any given content. Further information on the CI builds is available on the
Documentation jobs page.

Some of the live web documentation also features ‘Show on GitHub’ and ‘Edit on GitHub’ links in the lefthand menu
which will take you directly to the source file and allow you to edit within the GH interface and then open a PR (you
should never use this functionality to edit autogenerated pages, see below for details of these).

14.1 Overview

This page covers technical documentation which is written in .rst files and generated into html using Sphinx. There are
sets for each aspect of the project, plus this set of ‘contributing developer’ documentation aimed at giving an overview
of the OME process and workflows across products that might be of interest to external people, and the OME internal
docs for internal-only private workflows and processes.

Some of the content for these is either autogenerated or copied from external sources as described below. Formatting
and style guidance can be found in the README for the ome-documentation repo, along with instructions for getting
set up with Sphinx.

The jekyll websites hosted by OME, which include the Help workflow guides, are covered on Jekyll-hosted websites.

14.2 What goes where?

The decision trees below try to give an insight into the thought process behind choosing what information to host where.

14.3 Bio-Formats documentation

Hosted at https://docs.openmicroscopy.org/bio-formats/{{version}} (plus latest redirect -
docs.openmicroscopy.org/latest/bio-formats/)

This documentation covers all aspects of Bio-Formats - using it with other tools, specific guidance for Bio-Formats
developers, and supported formats. Related topics - OME file formats and the data model are covered in the OME Data
Model and File Formats documentation.

71

https://github.com/ome/ome-documentation/blob/develop/README.rst
https://docs.openmicroscopy.org/bio-formats/
https://docs.openmicroscopy.org/latest/bio-formats/

OME Contributing Developer

Fig. 1: Project-wide information

Fig. 2: Product-specific information

72 Chapter 14. Editing the OME documentation

OME Contributing Developer

14.3.1 Builds

See Documentation jobs.

14.3.2 Source

The Sphinx documentation is decoupled from the code repository, at https://github.com/ome/
bio-formats-documentation.

14.3.3 Building locally

The build uses Sphinx via Maven. mvn will generate the webpages provided you have both Sphinx and Maven installed.
To avoid running the linkchecker by default use mvn -DskipSphinxTests.

14.3.4 Building/reviewing PRs via the CI

Once a PR is open, you can build it for review using the https://merge-ci.openmicroscopy.org/jenkins/job/
BIOFORMATS-linkcheck job on the Jenkins CI. Staging documentation is no longer deployed at a URL but you
can download it as a zip for review with the correct styling by going to the workspace folder in the job.

14.3.5 Autogenerated content

The following parts of the documentation are autogenerated during the build:

• Supported Formats table and format pages - generated from format-pages.txt

• Dataset structure table - generated from the readers

• Metadata support table - generated from the readers

Generally, unless you are adding new file support, the format pages are the only ones you are likely to be editing. There
is documentation on Adding format/reader documentation pages in the Bio-Formats developer section.

14.3.6 Publishing

The live webpages are updated as part of the release process.

14.4 OME Contributing Developer documentation

Hosted at https://docs.openmicroscopy.org/contributing/ (always latest).

This covers the OME team processes and workflows that may be of interest to external contributors or other open
source teams - information about what tools we use and how, rather than internal-only workflows (like standup prep)
or anything which needs to be kept private (these belong in the internal docs instead).

14.4. OME Contributing Developer documentation 73

https://github.com/ome/bio-formats-documentation
https://github.com/ome/bio-formats-documentation
https://merge-ci.openmicroscopy.org/jenkins/job/BIOFORMATS-linkcheck
https://merge-ci.openmicroscopy.org/jenkins/job/BIOFORMATS-linkcheck
https://github.com/ome/bio-formats-documentation/blob/master/src/main/resources/format-pages.txt
https://docs.openmicroscopy.org/latest/bio-formats/developers/format-documentation.html
https://docs.openmicroscopy.org/contributing/

OME Contributing Developer

14.4.1 Builds

See Documentation jobs.

14.4.2 Source

The source files are at https://github.com/ome/ome-contributing.

14.4.3 Building locally

The build uses Sphinx. You can build locally using make clean html provided you have Sphinx. There is further
information on getting these set up in the README.

14.4.4 Building/reviewing PRs

Once a PR is open, a build on Read the docs will be triggered. Staging documentation will be available at a given URL
linked to the PR. See https://docs.readthedocs.io/en/stable/pull-requests.html for more details.

14.4.5 Publishing

The live webpages are updated when a PR is merged.

14.5 OME Data Model and File Formats documentation

Hosted at https://docs.openmicroscopy.org/ome-model/{{version}}/ (plus latest redirect - https://docs.
openmicroscopy.org/latest/ome-model/).

This covers the OME-TIFF format and the OME data model.

14.5.1 Builds

See Documentation jobs. Note that this documentation is built and hosted individually and as part of the OME Files
documentation bundle.

14.5.2 Source

The documentation is in the /docs/sphinx/ folder in the code repository at https://github.com/ome/ome-model.

74 Chapter 14. Editing the OME documentation

https://github.com/ome/ome-contributing
https://docs.readthedocs.io/en/stable/pull-requests.html
https://docs.openmicroscopy.org/ome-model/
https://docs.openmicroscopy.org/latest/ome-model/
https://docs.openmicroscopy.org/latest/ome-model/
https://github.com/ome/ome-model

OME Contributing Developer

14.5.3 Building locally

The build uses Sphinx via Maven. You can build locally using make clean html provided you have both installed.

14.5.4 Building/reviewing PRs via the CI

Once a PR is open, you can build it for review using the https://merge-ci.openmicroscopy.org/jenkins/job/
BIOFORMATS-build job on the Jenkins CI. Staging documentation is no longer deployed at a URL but you can
download it as a zip for review with the correct styling from the job page (see ‘Last Successful Artifacts’ at the top of
the centre panel.

14.5.5 Publishing

The live webpages are updated as part of the release process.

14.6 OME Internal documentation (private)

For members of the OME team, this set of documentation is available at https://docs.openmicroscopy.org/internal/
behind an ldap log-in.

14.6.1 Builds

https://ci.openmicroscopy.org/job/OME-internal-merge-docs.

14.6.2 Source

https://github.com/openmicroscopy/ome-internal (private repository)

14.6.3 Building locally

The build uses Sphinx via ant. You can build locally using make clean html provided you have both installed.

14.6.4 Building/reviewing PRs via the CI

Once a PR is open, you can build it using https://ci.openmicroscopy.org/job/OME-internal-merge-docs and then view
the rendered text on the live webpages.

14.6. OME Internal documentation (private) 75

https://merge-ci.openmicroscopy.org/jenkins/job/BIOFORMATS-build
https://merge-ci.openmicroscopy.org/jenkins/job/BIOFORMATS-build
https://docs.openmicroscopy.org/internal/
https://ci.openmicroscopy.org/job/OME-internal-merge-docs
https://github.com/openmicroscopy/ome-internal
https://ci.openmicroscopy.org/job/OME-internal-merge-docs

OME Contributing Developer

14.6.5 Publishing

Content is automatically published to the private URL each day or when the merge build is run.

14.7 OMERO documentation

Hosted at https://docs.openmicroscopy.org/omero/{{version}}/ (plus latest redirect - https://docs.openmicroscopy.org/
latest/omero/).

This documentation includes developer and sysadmin documentation for OMERO, version history, client overviews and
CLI usage documentation. Workflow-based user documentation belongs in the Help instead while features and other
overview material aimed at scientists and other non-IT people may belong on the website (see Jekyll-hosted websites).

14.7.1 Builds

See Documentation jobs.

14.7.2 Source

All the source files are in the /omero/ folder at https://github.com/ome/ome-documentation.

14.7.3 Building locally

The build uses Sphinx via ant. You can build locally using make clean html provided you have both installed.
There is further information on getting these set up and on build targets in the README.

14.7.4 Building/reviewing PRs via the CI

Once a PR is open, you can build it for review using the https://merge-ci.openmicroscopy.org/jenkins/job/
OMERO-docs job on the Jenkins CI. Staging documentation are no longer deployed at a URL but you can download it
as a zip for review with the correct styling from the top centre panel in the job, under ‘Last Successful Artifacts’.

14.7.5 Autogenerated/inserted external content

The OMERO documentation is the most complicated set, being the only repo where material is sourced from other
repositories. Source repositories are:

• https://github.com/ome/openmicroscopy/ (OMERO code repo)

• https://github.com/ome/omero-install (OMERO server with Web installation)

• https://github.com/ome/omeroweb-install (OMERO.web separately from OMERO.server installation)

76 Chapter 14. Editing the OME documentation

https://docs.openmicroscopy.org/omero/
https://docs.openmicroscopy.org/latest/omero/
https://docs.openmicroscopy.org/latest/omero/
https://github.com/ome/ome-documentation
https://github.com/ome/ome-documentation/blob/develop/README.rst
https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-docs
https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-docs
https://github.com/ome/openmicroscopy/
https://github.com/ome/omero-install
https://github.com/ome/omeroweb-install

OME Contributing Developer

Version history

Content for OMERO version history should first be submitted as a PR against https://github.com/ome/openmicroscopy/
blob/develop/history.rst in the OMERO code repository. Best practice is to paste the content into the documentation
page to test build it before opening the PR. Once the PR is merged, an autogenerated PR can be opened against the
documentation repo to transfer the content.

CLI output

The output of the following CLI commands will be used as configuration files in the documentation:

• omero config parse

• omero ldap setdn -h

• omero db script

• omero web config nginx

• omero web config nginx-location

See autogen_docs to check the name of the output files. Changes to the output should be submitted as a PR against the
OMERO code repository.

Installation walkthroughs

Installation walkthroughs for OMERO.server and OMERO.web are generated in separate repositories. When the in-
stallation instructions are modified e.g. a new dependency is added, a PR must be opened against one of the following
repositories:

• https://github.com/ome/omero-install for server installation with OMERO.web

• https://github.com/ome/omeroweb-install for OMERO.web installation not with an OMERO.server

OMERO.server installation with OMERO.web:

• The walkthroughs are generated using a bash script

• Code snippets will be included in the documentation pages using literalinclude e.g. server-ubuntu-ice36.rst

• The changes made against https://github.com/ome/omero-install will only be included in the documentation
once they are merged and the autogen job has been run. When making changes that need to be visible in the
documentation during review, you will need to:

– Generate the walkthrough(s)

– Open a doc PR

– Copy the generated walkthrough(s) under omero/sysadmins/unix/walkthrough

– Adjust if required the start/end of the literalinclude

OMERO.web installation separately from OMERO.server:

• The walkthroughs are generated using ansible. The omeroweb-install README file contains instructions on
how to generate the walkthroughs

• The generated walkthroughs are .rst files that are used as pages in the documentation. This workflow does not
use literalinclude.

• The changes made against https://github.com/ome/omeroweb-install will only be included in the documentation
once they are merged and the autogen job has been run. When making changes that need to be visible in the
documentation during review, you will need to:

14.7. OMERO documentation 77

https://docs.openmicroscopy.org/latest/omero/users/history.html
https://github.com/ome/openmicroscopy/blob/develop/history.rst
https://github.com/ome/openmicroscopy/blob/develop/history.rst
https://github.com/ome/ome-documentation/blob/develop/omero/autogen_docs
https://github.com/ome/omero-install
https://github.com/ome/omeroweb-install
https://github.com/ome/omero-install
https://github.com/ome/ome-documentation/tree/develop/omero/sysadmins/unix/walkthrough
https://github.com/ome/omeroweb-install/blob/master/README.md
https://github.com/ome/omeroweb-install

OME Contributing Developer

– Generate the walkthrough(s)

– Open a doc PR

– Copy the generated walkthrough(s) under omero/sysadmins/unix/install-web/walkthrough

Model glossary

Content for Glossary of all OMERO Model Objects is generated using GraphPathReport.

To update the content:

• Run the command indicated in GraphPathReport to generate EveryObject.rst

• Replace EveryObject.rst with the generated one

• Open a PR with any changes

Training examples

The contents of the following examples files is not automatically updated:

• omero/developers/Java.rst

• omero/developers/Matlab.rst

• omero/developers/Python.rst

When the examples under https://github.com/ome/openmicroscopy/tree/develop/examples/Training are modified, you
will need to manually make the changes in the above files and open a doc PR.

78 Chapter 14. Editing the OME documentation

https://github.com/ome/ome-documentation/tree/develop/omero/sysadmins/unix/install-web/walkthrough
https://docs.openmicroscopy.org/latest/omero/developers/Model/EveryObject.html
https://github.com/ome/omero-server/blob/master/src/main/java/ome/services/graphs/GraphPathReport.java
https://github.com/ome/omero-server/blob/master/src/main/java/ome/services/graphs/GraphPathReport.java
https://github.com/ome/ome-documentation/blob/develop/omero/developers/Model/EveryObject.rst
https://github.com/ome/ome-documentation/blob/develop/omero/developers/Java.rst
https://github.com/ome/ome-documentation/blob/develop/omero/developers/Matlab.rst
https://github.com/ome/ome-documentation/blob/develop/omero/developers/Python.rst
https://github.com/ome/openmicroscopy/tree/develop/examples/Training

CHAPTER

FIFTEEN

JEKYLL-HOSTED WEBSITES

The main OME website is produced using Jekyll.

15.1 Installing Jekyll

Jekyll can be installed as a system application (requires administrator privileges) or for a single user.

1. Install a recent version of Ruby. Recent versions of OS X and Linux may already include a suitable version,
however you will require administrator privileges to install Jekyll. Alternatively on OS X you can use Homebrew,
and on Linux either rbenv or RVM:

brew install ruby

2. Install Jekyll:

gem install jekyll

15.2 Running Jekyll

In a terminal enter the local git checkout and run:

jekyll serve -w -b ''

This will build the web pages and start a local server on http://localhost:4000/. Jekyll should automatically rebuild the
pages when changes are made to the source files, and will override any baseurl defined in _config.yml.

15.3 Editing the website

The source for the OME website is on GitHub at https://github.com/ome/www.openmicroscopy.org. The website uses
the ‘master’ branch, PRs should be opened directly against it. Most of the files are written in html but the announcements
and blog posts are in markdown and further content may migrate to markdown in future.

Once a PR is open and has passed Travis, it will be integrated in the staging integration branch for the OME Website site
via the daily https://merge-ci.openmicroscopy.org/jenkins/job/WEBSITE-push job. The staging Jekyll website will be
deployed by the GitHub Pages service at https://snoopycrimecop.github.io/www.openmicroscopy.org for review.

Once the PR is merged, the HEAD of master will be deployed by the GitHub pages service at https://ome.github.io/
www.openmicroscopy.org.

79

https://www.openmicroscopy.org/
https://jekyllrb.com/
https://github.com/sstephenson/rbenv
https://rvm.io/
http://localhost:4000/
https://www.openmicroscopy.org
https://github.com/ome/www.openmicroscopy.org
https://merge-ci.openmicroscopy.org/jenkins/job/WEBSITE-push
https://pages.github.com
https://snoopycrimecop.github.io/www.openmicroscopy.org
https://pages.github.com
https://ome.github.io/www.openmicroscopy.org
https://ome.github.io/www.openmicroscopy.org

OME Contributing Developer

Updating the live website requires two steps, first creating an archive of the static website and then deploying it on the
web server:

• to release the Jekyll source code, a signed Git tag needs to be created from the master branch of the source code.
Website tags must follow the Calendar Versioning scheme using the tag date

• after pushing the tag, an artifact of the static website will be built by GitHub Actions and deployed as an asset of
the associated GitHub release

• on the server hosting the website, a cron job will update the website hourly if a new release has been created on
GitHub

• if needed, the static website can also be updated manually by executing the sudo deploy -f command from
the OME website server.

80 Chapter 15. Jekyll-hosted websites

https://calver.org/
https://github.com/ome/www.openmicroscopy.org/actions
https://github.com/ome/www.openmicroscopy.org/releases

CHAPTER

SIXTEEN

DEVELOPMENT OF THE OME DATA MODEL

Warning: This page is being restructured following the decoupling of the data model from the Bio-Formats code
repository. An updated version will be published shortly.

16.1 Introduction

This is a document describing a way to work and publish the OME model schema on the OME website, based on
observations of the 2016-06 release being performed; that release version is used in the examples below. Throughout
the process it is important to not just copy and paste, but to understand what is actually being done and why. The
text below is not quite yet a step-by-step guide, more a set of explanations that should make the necessary steps clear.
Many of the command-line scripts below assume that you start at the top level of your Bio-Formats repository, and they
include some /path/to directories for you to adjust as appropriate.

16.2 Schema development

16.2.1 Clean the repository

In working with the Bio-Formats git repository, first clean the unnecessary files away so that they cause no confusing
clutter that wastes your time. From the top-level bioformats folder, while ant clean and mvn clean are both fine
approaches, the most thorough is git clean -dfx.

16.2.2 Major or minor release?

A minor release of the OME model schema may suffice for changes like adding new legal values to an existing enu-
meration. A release must be major if,

• some documents that validate under the current release will not validate under the new one (a major “data-level”
change)

• some terms in the schema have changed meaning and may thus be acted on differently (a major “information-
level” change)

A major release requires changing the schema’s namespace. For a minor release it suffices to increment the value of
the version attribute of the xsd:schema element, leaving the namespace unchanged.

See also:
PR #1999 (major schema change), PR #2553 (minor schema change)

81

https://github.com/openmicroscopy/bioformats/pull/1999
https://github.com/openmicroscopy/bioformats/pull/2553

OME Contributing Developer

16.2.3 Create the new schema directory

Note: This subsection is for major releases only. A minor release can reuse the schema directory for the current
release, so skip over this part.

For the schema release process a high fraction of the necessary work occurs in Bio-Formats’ components/specification
directory. Inside there, components/specification/released-schema contains a subdirectory for each schema, even before
its actual release.

To preserve the version history, the creation of the new schema directory is performed across a pair of commits. First,
the latest patch gets its new name, for example:

cd components/specification/released-schema
mkdir 2015-01
git mv 2013-10-dev-5/catalog.xml 2015-01
git mv 2013-10-dev-5/*.xsd 2015-01

then, for the subsequent commit, remember to do:

git checkout HEAD^ 2013-10-dev-5/catalog.xml
git checkout HEAD^ 2013-10-dev-5/*.xsd
git add 2013-10-dev-5/*

to restore the released files from the latest patch. In this way, the files of the actually released schema retain their version
history.

For an even later commit one may consider:

git rm -r 2013-10-dev-?

which removes the patch versions if no longer desired.

Note: It may make sense to adjust the above git mv commands to move fewer files to the release directory. For
instance, OMERO.xsd is not used by the OME schema so need not be released alongside it in the 2015-01 directory if
has not been changed since the previous release.

16.2.4 Catalog files

The released schema directories have catalog files that list their contents. For instance:

cd components/specification/released-schema
find . -name catalog.xml

Within each commit, each catalog file should be kept up to date with changes made in that same directory, such that
the catalogs always list exactly the available schema definitions.

82 Chapter 16. Development of the OME Data Model

OME Contributing Developer

16.2.5 XML transforms

The changes made to the released schemas should be accompanied by changes to the XML transforms in compo-
nents/specification/transforms. For major releases use git mv in renaming the upgrade and downgrade for the latest
patch. Remember to restore the originals in a later commit, as above when restoring the schema definition files for the
latest patch.

For minor releases it suffices to adjust the existing upgrade and downgrade transforms for the current release. Remember
that users may be downgrading from an earlier minor version than this newest version.

The transforms’ analog of the catalog files is components/specification/transforms/ome-transforms.xml which should
describe the transforms in its directory for that commit.

16.2.6 Search and replace

Note: This subsection is for major releases only. A minor release reuses the current release and patch versions, so
skip over this part.

There are various references to the latest patch version and even the latest release version to be updated; the whole
Bio-Formats repository requires checking.

In replacing the “2013-10-dev-5” schema references within the actual schema definition files in the new
released-schema/2015-01 directory, also update the copyright date in their headers, and the date in ome.xsd’s
first xsd:documentation tag. Likewise, with the XML transforms, update the copyright date in their headers, and in the
attributes appearing near the start of components/specification/transforms/ome-transforms.xml.

Other files in which to fix the schema version include:

• components/autogen/build.properties and ant/xsd-fu.xml for code generation

• the Project Object Model, Maven’s pom.xml

• the components/specification/publish because of the HTML within

• checks in the Bio-Formats code for the latest schema version, including various Java classes (version.equals,
SCHEMA_LOCATION, etc.)

Avoid changing:

• sample files in components/specification/samples

• old schema releases

16.2.7 Testing

Once the above changes have been made and committed, it is time to test. This requires having various prerequisites
installed for Bio-Formats development, including for the C++ implementation. Before each test, clean the repository:

git clean -dfx
ant test
git clean -dfx
mvn test
git clean -dfx
TMPDIR=/tmp/bf-build-`date +%s`
mkdir $TMPDIR
pushd $TMPDIR

(continues on next page)

16.2. Schema development 83

https://downloads.openmicroscopy.org/latest/ome-files-cpp/

OME Contributing Developer

(continued from previous page)

cmake `dirs +1`
make
ctest -V
popd

You may care to give make an additional -j option specifying the number of cores to use in parallelizing the build.
Note that the ctest step can take a long time.

16.3 Sample files

16.3.1 OME-XML sample files

Once the schemas and transforms are moved and named to fit the release version, then the sample files can be upgraded.
A new copy of the sample files is created in a new directory, updated to the new schema using xsltproc with the new
transform, then pretty-printed with xmllint or similar. A sufficient command-line approach is:

cd components/specification/samples
for SRC in `find 2015-01 -type f -name '*.ome' -o -name '*.xml'`
do DEST=`echo $SRC | sed -e 's/^2015-01/2016-06/‘`

mkdir -p `dirname $DEST`
<$SRC xsltproc ../transforms/2015-01-to-2016-06.xsl - | xmllint --format - >$DEST

done

The OME-TIFF files require special handling, as they do not have an automatic update tool. First, identify them and
copy them to the new directory:

find 2015-01 -name '*.ome.tiff'
cp 2015-01/set-1-meta-companion/*.ome.tiff 2016-06/set-1-meta-companion/

Next, each OME-TIFF file must be edited to have the schema version changed to that of the new release. They are
binary files so choice of editor is important; the other non-text data must be preserved. One of several suitable options
is Emacs’ Hexl mode.

16.3.2 OME-TIFF sample files

Sample files for each schema release version are available under https://downloads.openmicroscopy.org/images/
OME-TIFF/. The sample files in the previous release’s directory, and the multi-file samples in its tubhiswt-* direc-
tories, are upgraded to the new schema using bfconvert from the updated Bio-Formats repository: in that repository
use ant tools to generate the necessary bioformats_package.jar Java archive file. The sample files from the
subdirectories are provided also as compressed “zip” archive files. The files in the bioformats-artificial subdi-
rectory are generated by other Bio-Formats classes. Putting these facts together, setting up the new “2016-06” samples
folder is easily achieved:

mkdir 2016-06
mkdir 2016-06/binaryonly
mkdir 2016-06/companion
mkdir 2016-06/modulo
cd 2015-01
for i in *.ome.tif*
do /path/to/bioformats/tools/bfconvert $i ../2016-06/$i

(continues on next page)

84 Chapter 16. Development of the OME Data Model

https://www.gnu.org/software/emacs/manual/html_node/emacs/Editing-Binary-Files.html
https://downloads.openmicroscopy.org/images/OME-TIFF/
https://downloads.openmicroscopy.org/images/OME-TIFF/

OME Contributing Developer

(continued from previous page)

done
cd binaryonly
for i in *.ome.tif*
do /path/to/bioformats/tools/bfconvert $i ../../2016-06/binaryonly/$i
done
cd ../companion
for i in *.ome.tif*
do /path/to/bioformats/tools/bfconvert $i ../../2016-06/companion/$i
done
cd ../modulo
for i in *.ome.tif*
do /path/to/bioformats/tools/bfconvert $i ../../2016-06/modulo/$i
done
for i in tubhiswt-?D
do mkdir ../2016-06/$i

FROM=`ls $i | head -n 1`
TO=`echo $FROM | sed -e 's/_C0/_C%c/ ; s/_TP0/_TP%t/'`
/path/to/bioformats/tools/bfconvert $i/$FROM ../2016-06/$i/$TO

done
cd ../2016-06
for i in tubhiswt-?D ; do zip $i.zip $i/* ; done
mkdir bioformats-artificial
cd bioformats-artificial
BF_PROG=loci.formats.tools.MakeTestOmeTiff /path/to/bioformats/tools/bf.sh
for i in *.ome.tif ; do zip $i.zip $i ; done

Review the new sample files to ensure that they look correct. At the end of the next step they are published online.

Binary Only and companion files: The OMETiffWriter does not support the writing of sample BinaryOnly or Com-
panion files. If the only required update is to change the schema version then the files may be edited with a Hex Editor.
Any additional editing may change the length of the file and invalidate the tiff header.

In instances where more detailed changes are required to BinaryOnly samples:

• Write a short program using OMETiffReader and Writer to read and write the existing sample

• Using debugging tools, inject the desired OME XML prior to saveComment in OMETiffWriter close function

• Ensure when modifying the XML that the UUID values are correct

• Verify that files pass using xmlvalid and tiffinfo commands

16.4 Schema publication

16.4.1 Schema release

Once a specification change has been made into an ome-model release, the publish script in the https://github.com/
ome/schemas repository automatically generates new schemas pages published at https://www.openmicroscopy.org/
Schemas/.

16.4. Schema publication 85

https://github.com/ome/schemas
https://github.com/ome/schemas
https://www.openmicroscopy.org/Schemas/
https://www.openmicroscopy.org/Schemas/

OME Contributing Developer

16.4.2 Generated documentation

Documentation for the released schema must be generated from the ome.xsd definition file. The XML editor oXygen
is recommended for this task, and requires the schema definitions to have been published online as described above.
To build the generated documentation for a given release:

/Applications/oxygen/schemaDocumentationMac.sh https://www.openmicroscopy.org/Schemas/
→˓OME/$RELEASE/ome.xsd -cfg:components/specification/omeOxygenDocConfig.xml

Check that the documentation generated in the new output directory all looks correct.

The https://ci.openmicroscopy.org/job/SCHEMA-documentation job will generate the oXygen documentation for a
given version of the schema. Once generated, this documentation can be transferred to a $RELEASE subfolder of /
var/www/html/www.openmicroscopy.org/specification/schema_doc on web-prod.

86 Chapter 16. Development of the OME Data Model

https://www.oxygenxml.com/
https://ci.openmicroscopy.org/job/SCHEMA-documentation
https://www.oxygenxml.com/

CHAPTER

SEVENTEEN

CHANGING THE SCHEMA

17.1 Background

OMERO.server stores data in PostgreSQL, a relational database system. The data schema defines what data is stored
and how, and new major versions of OMERO may change that schema. Database upgrade scripts transform data from
an older version of OMERO so that it conforms to the new schema.

Sometimes, a pull request on GitHub against the develop branch of OMERO may change the code base in ways that
cause changes in the resulting database schema. This is a problem because the schema must then be updated, and
other developers need to know that code from that pull request may cause problems unless they update their database
accordingly. To make sure that these database updates happen when necessary, if your pull request affects the schema
then you must increment the database patch number and provide an updated schema as described below.

Changes to the OME-XML model typically require corresponding changes in the OMERO data schema as defined in
its XML mappings files. These feed into OMERO’s database schema so this process is then required.

17.2 Patch number conflicts

It is possible that another person may also be working on a pull request that changes the schema and increments the
database patch number. This is unfortunate because if their pull request is merged it will be as if your pull request does
not change the patch number. Others may then unwittingly attempt to use your code with an inappropriate database. If
you are considering model changes, it is wise to discuss this with the core OME developers in advance. When working
on a schema-changing pull request, first ask or check if yours will be the only one that includes a schema change.

17.3 Model object proxies

Changes to model objects that are passed from the server to clients may require corresponding changes to be made to
the IceMapper class so that the client-side proxy objects are properly populated.

For example, commit 8815a409 adds fields to the Roles class in the server’s System.ice whose instances can be passed
to clients via the admin service API so a further commit 2426042a was needed to populate those fields in the proxy
object.

87

https://docs.openmicroscopy.org/latest/ome-model/developers/model-overview.html
https://github.com/ome/omero-model/blob/master/src/main/resources/mappings/
https://github.com/ome/omero-blitz/blob/master/src/main/java/omero/util/IceMapper.java
https://github.com/ome/openmicroscopy/commit/8815a409e24b41ff4c68829657ad98a278594ade
https://github.com/ome/omero-blitz/blob/master/src/main/slice/omero/System.ice
https://github.com/ome/omero-blitz/blob/master/src/main/slice/omero/api/IAdmin.ice
https://github.com/ome/openmicroscopy/commit/2426042a4f0b5e31a6e9743844da168a9e550375

OME Contributing Developer

17.4 Database patch numbers

omero-model.properties contains a configuration setting for omero.db.patch. An existing OMERO database records
the patch number of its schema, as demonstrated from the psql shell:

omero=> select currentpatch from dbpatch;
currentpatch

4
(1 row)

indicating that a database is on patch version 4. Correspondingly, in https://github.com/ome/omero-model,

$ grep ^omero.db.patch= src/main/resources/omero-model.properties
omero.db.patch=4

By incrementing the patch number with each schema change, OMERO.server is prevented from attempting to use a
database whose schema does not match its code.

17.5 Updating the schema and the SQL scripts

Warning: This section is NOT up-to-date. Steps like using build-schema will not work with 5.5.0

Users may wish to upgrade their database from an older version of OMERO to one that has your new schema. SQL
upgrade scripts are provided to allow users to upgrade easily without having to understand the schema changes them-
selves, and part of the upgrade script will involve making the schema changes entailed with your pull request. The
https://github.com/ome/openmicroscopy/blob/develop/sql/README.txt file describes where to find the appropriate
script for you to adjust. SQL upgrade scripts must be supplied as part of the code changes to upgrade the database
from:

• the last release database, e.g. sql/psql/OMERO5.1DEV__5/OMERO5.0__0,

• the previous patch’s database, e.g. sql/psql/OMERO5.1DEV__5/OMERO5.1DEV__4.

In your git branch with the code that requires a schema change, edit omero-model.properties and increment the value
of omero.db.patch. For instance, in the above example, edit the file so that

$ grep ^omero.db.patch= src/main/resources/omero-model.properties
omero.db.patch=5

Move the previous patch’s SQL scripts into their new directory.

$ git mv sql/psql/OMERO5.1DEV__4 sql/psql/OMERO5.1DEV__5

Restore the upgrade to that previous patch.

$ mkdir sql/psql/OMERO5.1DEV__4
$ git mv sql/psql/OMERO5.1DEV__5/OMERO5.1DEV__3.sql sql/psql/OMERO5.1DEV__4/OMERO5.1DEV__
→˓3.sql

Build OMERO.server with your code that changes the schema, then use the build-schema build target to update the
SQL scripts in the new sql/psql/OMERO5.1DEV__5 directory.

88 Chapter 17. Changing the schema

https://github.com/ome/omero-model/blob/master/src/main/resources/omero-model.properties
https://github.com/ome/omero-model
https://github.com/ome/openmicroscopy/blob/develop/sql/README.txt
https://github.com/ome/omero-model/blob/master/src/main/resources/omero-model.properties

OME Contributing Developer

$./build.py build-schema

Now, when you use omero db script in setting up a database for your modified server, the generated SQL script cre-
ates the new schema that your code requires. Use this script to set up your database so that you can start OMERO.server
and test your changes thoroughly.

A combination of sql/psql/OMERO5.1DEV__4/OMERO5.1DEV__3.sql and the changes within sql/psql/OMERO5.
1DEV__5 that git diff reports should help you to create a new sql/psql/OMERO5.1DEV__5/OMERO5.1DEV__4.
sql.

When you commit your code and issue a pull request, include the changes to omero-model.properties and https://github.
com/ome/openmicroscopy/tree/develop/sql/psql among the commits in the pull request.

17.5. Updating the schema and the SQL scripts 89

https://github.com/ome/omero-model/blob/master/src/main/resources/omero-model.properties
https://github.com/ome/openmicroscopy/tree/develop/sql/psql
https://github.com/ome/openmicroscopy/tree/develop/sql/psql

OME Contributing Developer

90 Chapter 17. Changing the schema

CHAPTER

EIGHTEEN

PYTHON DEVELOPMENT

18.1 Release process

Prior to release a new version, the maintainer:
• can create a GitHub project and/or milestone if required listing the PRs to be considered in the upcoming

release (optional)

• must create an entry in the CHANGELOG: PRs included in the release should be listed in the
CHANGELOG with a link to the PR.

• must have the ability to push the generated tag to origin.

Many OME repositories use bump2version to manage version numbers. These can be identified by the presence of a
.bumpversion.cfg file at the top of the repository.

First fetch and checkout master or main branch:

$ git fetch origin
$ git checkout master
$ git rebase origin/master

You will need to be able to sign commits with gpg. Test this with:

$ echo "test" | gpg --clearsign

Compare the current version in .bumpversion.cfg with the last release version to see if the current difference represents a
patch release. If any PRs are merged that would require the next release to be a major or minor version (see semver.org)
then that PR can include a version bump created via:

$ bumpversion --no-tag minor|major

If this hasn’t been performed prior to release and you wish to specify the next version number directly when creating
the release, this can be achieved with:

$ bumpversion --new-version 5.9.0 release

If the version is already suitable, simply run:

$ bumpversion release

This will remove the .dev0 suffix from the current version, commit, and tag the release.

To switch back to a development version run:

91

https://pypi.org/project/bump2version/
https://semver.org/

OME Contributing Developer

$ bumpversion --no-tag patch

NB: this assumes next release will be a patch (see below). To complete the release, push the master branch and the
release tag to origin:

$ git push origin master v5.8.0

92 Chapter 18. Python development

CHAPTER

NINETEEN

PUBLISHING TO PYPI

Many of the OME Python repositories use GitHub actions to publish to Pypi when a new tag is created and pushed to
GitHub. This is typically specified in a file such as .github/workflows/publish_pypi.yml.

Information specific to developing OMERO, the OME Data Model and file formats, and Bio-Formats can be found in
their respective developer documentation sections:

• OMERO developer documentation

• Bio-Formats developer documentation

• OME Data Model and File Formats documentation

If you have any questions, please see our Support page for ways to get in touch.

93

https://pypi.org/
https://docs.openmicroscopy.org/latest/omero/developers/index.html
https://docs.openmicroscopy.org/latest/bio-formats/developers/index.html
https://docs.openmicroscopy.org/latest/ome-model/index.html
https://www.openmicroscopy.org/support/

OME Contributing Developer

94 Chapter 19. Publishing to Pypi

INDEX

Symbols
-D

scc-merge command line option, 51
-E

scc-merge command line option, 51
-I

scc-merge command line option, 52
-S

scc-merge command line option, 52
--check-commit-status

scc-merge command line option, 52
--comment

scc-merge command line option, 51
--continue

scc-rebase command line option, 54
--default

scc-merge command line option, 51
--exclude

scc-merge command line option, 51
--include

scc-merge command line option, 52
--info

scc-merge command line option, 52
--init

scc-deploy command line option, 56
--no-check

scc-check-prs command line option, 56
--no-delete

scc-rebase command line option, 54
--no-pr

scc-rebase command line option, 54
scc-update-submodules command line

option, 54
--push

scc-merge command line option, 52
scc-update-submodules command line

option, 53
--remote

scc-check-prs command line option, 55
scc-merge command line option, 52
scc-rebase command line option, 54

scc-update-submodules command line
option, 54

--reset
scc-merge command line option, 52

--shallow
scc-check-prs command line option, 55
scc-merge command line option, 52

-n
scc-check-status command line option, 57

A
ANNOUNCEMENT_URL, 68

B
BF_RELEASE, 67
BIOFORMATS-build, 66
BIOFORMATS-image, 66
BIOFORMATS-linkcheck, 66
BIOFORMATS-push, 66
BIOFORMATS-test-repo, 66

E
environment variable

ANNOUNCEMENT_URL, 68
BF_RELEASE, 67
JENKINS_JOB, 67
MILESTONE, 68
OMERO_RELEASE, 67
RELEASE, 68, 69
SOURCE_BRANCH, 67
SOURCE_USER, 67
SPHINXOPTS, 67

H
https://ci.openmicroscopy.org/job/BIOFORMATS-DEV-release,

68

J
JENKINS_JOB, 67

M
Major release, 63

95

OME Contributing Developer

MILESTONE, 68

O
OMERO_RELEASE, 67
OMERO-build, 65
OMERO-build-build, 65
OMERO-build-push, 65
OMERO-DEV-release, 69
OMERO-DEV-release-artifacts, 69
OMERO-DEV-release-downloads, 69
OMERO-DEV-release-push, 68
OMERO-DEV-release-trigger, 68
OMERO-docs, 67
OMERO-gradle-plugins-build, 65
OMERO-gradle-plugins-push, 65
OMERO-insight-build, 65
OMERO-insight-push, 65
OMERO-matlab-build, 65
OMERO-matlab-push, 65
OMERO-push, 65
OMERO-server, 65
OMERO-test-integration, 66
OMERO-web, 65

P
Point release (patch release), 63
PRESENTATIONS-merge, 67

R
RELEASE, 68, 69

S
scc-check-prs command line option

--no-check, 56
--remote, 55
--shallow, 55

scc-check-status command line option
-n, 57

scc-deploy command line option
--init, 56

scc-merge command line option
-D, 51
-E, 51
-I, 52
-S, 52
--check-commit-status, 52
--comment, 51
--default, 51
--exclude, 51
--include, 52
--info, 52
--push, 52
--remote, 52

--reset, 52
--shallow, 52

scc-rebase command line option
--continue, 54
--no-delete, 54
--no-pr, 54
--remote, 54

scc-update-submodules command line option
--no-pr, 54
--push, 53
--remote, 54

SOURCE_BRANCH, 67
SOURCE_USER, 67
SPHINXOPTS, 67

W
WEBSITE-push, 67

96 Index

	Checking out the source code
	Code locations
	OMERO
	Bio-Formats
	Other repositories

	Cloning the source code

	Using Git
	Installing Git
	Linux
	Mac OS X
	Windows

	Git configuration
	Interacting with GitHub
	Cloning the repositories
	GitHub remotes
	Pushing to GitHub
	Tracking others’ branches
	Cleaning up your GitHub branches

	Common Git Commands
	Collaborating via git rebase

	Working with submodules
	Commit messages
	Rebasing to keep code clean
	Branch naming
	Advanced: Branch management
	Branch types
	Investigations
	WIPs
	Deliverables
	The backlog

	Branch workflow
	Merge branches
	Code reviews and comments
	Pull Requests
	Pull Request conflicts

	Git resources

	Code contributions
	File headers
	Character encoding
	Code style and linting
	Copyrights
	Licenses
	Distribution
	Patches/Pull requests
	Submodules

	Procedure for accepting code contributions
	Examples of contribution templates

	Contributor License Agreement
	Team communication
	Instant messaging and video conferencing
	Other IM tools

	Trac
	Trello
	Developer documentation
	Jenkins: Continuous integration
	Git and GitHub: Source code
	Forums and mailing list
	Internal servers
	Google Docs
	Meetings

	Team workflow summary
	Development management
	Public-facing workflow

	Ansible roles development
	Source code
	Versioning
	Testing and Continuous Integration
	Distribution and support

	Java components (Maven)
	Conventions
	Source code and build system
	Development
	Distribution

	Release process
	Maintainer prerequisites
	Release strategies
	Release preparation
	Release promotion
	Next development version
	Javadoc

	Java components (Gradle)
	Conventions
	Source code and build system
	Development
	Distribution

	Release process

	C++ components
	Conventions
	Source code and build system
	Development
	Distribution

	Release process
	Maintainer prerequisites
	Source release
	Next development version

	OME development tools
	Development tools: maintenance
	Maintainer prerequisites
	Release process

	Code management: scc
	Installation
	Github connection
	scc merge
	Description
	Arguments
	Use cases

	scc travis-merge
	scc update-submodules
	scc rebase
	scc check-prs
	scc version
	scc deploy
	scc check-status

	OME administration: omego
	Installation

	OME development platform: devspace
	Installation
	Manual
	OpenStack

	OME deployment tools
	Prerequisites locations
	OME Infrastructure
	OMERO-install

	Testing workflow
	Devspace - Continuous Integration (Dev Testing)
	CI-master - Continuous Delivery (Production)

	How to add new/upgrade/remove old prerequisites
	Pre release testing
	EXAMPLE

	Continuous integration
	Continuous integration branches and jobs
	Versioning
	Development branches
	Labels
	Job names

	OMERO jobs
	Deployments
	Jobs

	Bio-Formats jobs
	Documentation jobs
	Configuration
	OMERO 5.x series
	Jekyll websites

	Release jobs
	Bio-Formats
	OMERO

	Editing the OME documentation
	Overview
	What goes where?
	Bio-Formats documentation
	Builds
	Source
	Building locally
	Building/reviewing PRs via the CI
	Autogenerated content
	Publishing

	OME Contributing Developer documentation
	Builds
	Source
	Building locally
	Building/reviewing PRs
	Publishing

	OME Data Model and File Formats documentation
	Builds
	Source
	Building locally
	Building/reviewing PRs via the CI
	Publishing

	OME Internal documentation (private)
	Builds
	Source
	Building locally
	Building/reviewing PRs via the CI
	Publishing

	OMERO documentation
	Builds
	Source
	Building locally
	Building/reviewing PRs via the CI
	Autogenerated/inserted external content
	Version history
	CLI output
	Installation walkthroughs
	Model glossary
	Training examples

	Jekyll-hosted websites
	Installing Jekyll
	Running Jekyll
	Editing the website

	Development of the OME Data Model
	Introduction
	Schema development
	Clean the repository
	Major or minor release?
	Create the new schema directory
	Catalog files
	XML transforms
	Search and replace
	Testing

	Sample files
	OME-XML sample files
	OME-TIFF sample files

	Schema publication
	Schema release
	Generated documentation

	Changing the schema
	Background
	Patch number conflicts
	Model object proxies
	Database patch numbers
	Updating the schema and the SQL scripts

	Python development
	Release process

	Publishing to Pypi
	Index

