

Contributing Developer Documentation

This documentation is for developers who want to contribute code to OME
consortium projects. It includes internal developer practices and workflows,
standard procedures for tasks such as release, and other information which may
be valuable to a wider audience.

	Checking out the source code

	Using Git

	Code contributions

	Contributor License Agreement

	Team communication

	Team workflow summary

	Ansible roles development

	Java components (Maven)

	Java components (Gradle)

	C++ components

	OME development tools

	OME deployment tools

	Continuous integration

	Editing the OME documentation

	Jekyll-hosted websites

	Development of the OME Data Model

	Changing the schema

	Python development

	Publishing to Pypi

Information specific to developing OMERO, the OME Data Model and file formats,
and Bio-Formats can be found in their respective developer documentation
sections:

	OMERO developer documentation [https://docs.openmicroscopy.org/latest/omero/developers/index.html]

	Bio-Formats developer documentation [https://docs.openmicroscopy.org/latest/bio-formats/developers/index.html]

	OME Data Model and File Formats documentation [https://docs.openmicroscopy.org/latest/ome-model/index.html]

If you have any questions, please see our Support page [https://www.openmicroscopy.org/support/]
for ways to get in touch.

Checking out the source code

This section is primarily designed for the core OME developers who want to
check out the main code base using Git. If you need guidance in installing,
configuring and using Git, see the Using Git page.

Code locations

OME code is stored in multiple git repositories, each of which is available
from several locations.

OMERO

The main repository, known as ome.git, is available from:

	https://github.com/ome/openmicroscopy

	git://openmicroscopy.org/ome.git

Bio-Formats

The Bio-Formats repository is available from:

	https://github.com/ome/bioformats

	git://openmicroscopy.org/bioformats.git

Other repositories

Each member of the GitHub openmicroscopy organization [https://github.com/ome],
as well as anyone else who has clicked the “Fork” button, will have their
own repository. These are listed here:

	https://github.com/ome/openmicroscopy/network/members

	https://github.com/ome/bioformats/network/members

Cloning the source code

Most OME development is currently happening on GitHub, therefore it is highly
suggested that you become familiar with how it works, if not create an account
for yourself.

Note

There is extensive guidance on the Using Git page and the
following examples assume you have set up your account using “gh” for your
personal repositories and “origin” as the official repositories as
described there.

Start by cloning the official repository for the project you want to work with
e.g.:

git clone https://github.com/ome/openmicroscopy.git

Since the openmicroscopy (OMERO) repository now makes use of submodules, you
first need to initialize all the submodules:

cd openmicroscopy
git submodule update --init

Alternatively, with version 1.6.5 of Git and later, you can pass the
--recursive option to git clone and initialize all submodules:

git clone --recursive https://github.com/ome/openmicroscopy.git

Note

The use of submodules does not apply to Bio-Formats, which has all
code and documentation within a single repository at
https://github.com/ome/bioformats.git

The natural workflow when using GitHub is not just to download someone else’s
repository, but also to create a personal working copy. Go to the repository
page at https://github.com/ome/openmicroscopy or
https://github.com/ome/bioformats and click on
“Fork”. This will create a copy of the repository in your own personal space
e.g.:

https://github.com/YOURNAME/bioformats

which can be added to your local repository as another remote:

git remote add gh git@github.com:YOURNAME/bioformats.git

Note

For the SSH transport to work, you will need to follow some of the
instructions under https://github.com/account/ssh

Depending on which repository you cloned first, either origin/develop or
gh/develop will be the “develop” branch of your own fork of
openmicroscopy/openmicroscopy or openmicroscopy/bioformats. The example below
assumes that “gh” is your own personal GitHub repository, and “origin” is the
official openmicroscopy repository.

You may even want to remove the “develop” branch from your fork since all
branching should happen from the official develop branch. If you’d prefer to
keep a copy of “develop” in “gh”, that is fine, but you may then need to keep
your develop up-to-date with the official develop:

git checkout develop
git reset --hard origin/develop # Warning: This will delete any unsaved changes and commits to develop!
git push -f gh develop # Warning: This will replace gh/develop with the official version remotely.

Using Git

The following is primarily designed for the core OME developers who are
contributing to our code base using Git. It should contain all the useful
commands and configuration you need for doing most Git tasks.

Note

This section assumes that “gh” is your own personal GitHub repository, and
“origin” is one of the official openmicroscopy repositories.

Installing Git

In general, see the Git downloads page [https://git-scm.com/download] for
installation options.

Linux

Most flavors of Linux have git available through the package manager. For
example, on Debian or Ubuntu:

sudo apt-get install git

Mac OS X

You can install Git using Homebrew [https://github.com/Homebrew]:

brew install git

Or you can use the binary installer [https://git-scm.com/download].

Windows

We recommend using either Git for Windows [https://git-for-windows.github.io] for a basic Git installation, or Cygwin [https://www.cygwin.com/]
for a full-featured Unix-style environment that includes Git. You can also use
TortoiseGit [https://tortoisegit.org] for Git shell integration. You may also want to consider
installing VirtualBox [https://www.virtualbox.org/] with a Linux guest OS to make your life easier. Lastly,
when using Git on Windows, please be aware of the CRLF conversion issue [https://help.github.com/articles/dealing-with-line-endings/].

Git configuration

If you are looking to get started as quickly as possible, the minimum you will
need is to have Git installed and then:

git config --global user.name "Full name"
git config --global user.email YOUR_EMAIL
git clone --recursive https://github.com/ome/REPOSITORY_NAME
cd REPOSITORY_NAME

You will not be able to push back to this repository, but you will at least
have something you can start looking at.

Git provides a number of options which can make working with it considerably
more pleasant. These configuration options are available either globally in
$HOME/.gitconfig or in the .git directory of your repository.
The file is in INI-format, but can also be modified using the git config
command, as illustrated in the examples following.

The most important thing is to update your ‘global’ credentials that are used
in your commits. These values are saved in ~/.gitconfig:

git config --global user.name "Full name"
git config --global user.email YOUR_EMAIL

If you have a PGP key for signing commits and tags, you may want to add it as
well:

git config --global user.signingkey YOUR_PGP_KEY_ID

Color and display options make log and diff output much more friendly:

git config --global color.ui true
git config --global color.diff auto
git config --global color.graph auto
git config --global color.status auto
git config --global color.branch auto

git config --global core.ui always
git config --global core.editor mate_wait

Aliases provide a way to make shortcuts for longer Git commands. One that is
often used among the OME team is graph:

git config --global alias.graph "log --date-order --graph --decorate --oneline"

See Helpful command aliases [http://gitready.com/intermediate/2009/02/06/helpful-command-aliases.html] for more examples.

Interacting with GitHub

Cloning the repositories

You can fork any of the openmicroscopy repositories you will be working on by
clicking the fork icon in the top righthand corner of each repo’s homepage on
GitHub. This will give you your own copy of the repo on GitHub. To set this up
from the command line so you can push to it and open PRs, you need to clone
the repo. The following example uses the documentation repo:

git clone https://github.com/ome/ome-documentation
cd ome-documentation
git remote add gh git@github.com:YOUR_USERNAME/ome-documentation.git

To clone private repositories you need to use the SSH protocol:

git clone git@github.com:openmicroscopy/REPO_NAME.git

GitHub remotes

You can add the other members of the OME network as remotes, so you
can follow what they are doing:

git remote add SOMEUSER git://github.com/SOMEUSER/openmicroscopy.git
git fetch SOMEUSER

If you would like to work more closely with someone, via pushing directly to
their branch or they from yours, then you can have them add you as a
collaborator on their repository or do the same for them on yours. This
is done under https://github.com/account/repositories

If you have not made such a repository yet as a remote, then you should
do so using the SSH protocol:

git remote add SOMEUSER git@github.com:SOMEUSER/openmicroscopy.git

Otherwise, you will need to modify its URL

git remote set-url SOMEUSER git@github.com:SOMEUSER/openmicroscopy.git

If you would like to be kept up-to-date on what several users are doing on
GitHub, you can set the “default remotes” value to the list of people
you would like to check in .git/config:

git config remotes.default "ome team origin gh official chris ola will jm colin"

Now, git remote update will check the above list of repositories.

Pushing to GitHub

When you have work which you want to share with the rest of the team,
it is vital that you push it to your GitHub fork.

git push gh your-branch

This will create a new branch, and the same command can be used to
subsequently update that branch.

If you NEED to use a different name for the branch on GitHub, you can
do:

git push gh your-branch:refs/heads/branch-name-on-gh

As mentioned elsewhere, the “refs/heads/” prefix only needs to be used to
create a new branch, and can be dropped for subsequent pushes.

Tracking others’ branches

The flip-side of pushing your own branches is being aware that other OME
developers will also be pushing theirs. GitHub provides a number of ways
of monitoring either a user or a repository. Notifications about what
watched users and repositories are doing can be seen in your GitHub
inbox or via RSS feeds. See Be social [https://help.github.com/articles/be-social/] for more information.

Even if you do not feel able to watch the everyone’s repository, you will
likely want to periodically check in on the current Pull Requests
(PRs) [https://github.com/ome/openmicroscopy/pulls]. These
will contain screenshots and other updates about what the team is
working on. When the PRs have been sufficiently reviewed, they will be
merged into the develop branch so that others’ work will start to be
based on it.

Cleaning up your GitHub branches

Once your branches have been merged into the mainline (“develop” of
openmicroscopy/openmicroscopy) you should delete them from your
repository.

git branch -d your-branch
git push gh :your-branch

This way, anyone looking at your fork clearly sees what is currently in
progress or upcoming.

Common Git Commands

Although everyone has a slightly different way of working, the following
command examples should show you much of what you will want to do on a
daily or weekly basis when working with OME via Git.

See if you have any changes that you might need to commit. This also
displays some useful tips on how to add and remove files:

git status

Create a branch from the “develop” branch:

git checkout -b feature/foo origin/develop

At this point, you are ready to do some work:

git checkout my-work # Just to be sure.
vim README.txt # edit files
git merge anotheruser/some-work
git status # See what you have done

You can also add files or directories to the ‘cache’ with interactive
choice of which ‘chunks’ to accept or decline (useful for checking that
you are not adding any unintended changes, print statements etc.):

git add -p path/to/dir/or/file

Check the status again - to see summary of what you are about to commit:

git status

Any remaining changes that you want to discard can be reverted by:

git checkout -- path/to/file.txt

When committing the code you have just modified/merged your commit message
should refer to related tickets. E.g. “See #1111 [https://trac.openmicroscopy.org/ome/ticket/1111]”
will link the commit to the ticket on trac, and “Fixes
#2222 [https://trac.openmicroscopy.org/ome/ticket/2222]”” will link and close the ticket on trac.

git commit -m "Add message here and refer to the ticket number. See #1234. Fixes #5678"

Note

If you want to add more than a short one-line message, you can omit the
-m “message” and Git will open your specified editor, where you should
add a single line summary followed by line space and then a paragraph of
more text. See Commit messages for more discussion.

After you have committed, you can keep working and committing as above -
the changes are only saved to your local git.

For example, you can move to another branch to continue work on a
different feature. To see a list branches:

git branch

Add the -a to list remote branches too.

To simply move between branches, use git checkout. All the files on
your file-system will be updated to the new branch:

git checkout dev_4_2

Note

Make sure they are refreshed if you have files open in an editor or IDE

If you have forgotten what you did on a particular branch, you can use
git log. Add the -p flag to see the actual diff for each commit.

You can use the first 5 characters of a commit’s hash key to begin the
log at a certain commit. E.g. show diff for commit 83dad:

git log 83dad -p

Or to display a nice graph:

git log --graph --decorate --oneline

If an alias has been set-up as described in the configuration section above,
you can just do:

git graph

This is most useful when showing how two branches are related:

git graph origin/develop develop

When you are ready, you will need to push your local changes to your own
forked repository in order to share with others. If the branch does not
yet exist in your repository, you will need to prefix the push command
with refs/heads:

git push gh my_fix_123:refs/heads/my_fix_123

After that initial push, the following will suffice as long as you are
on the my_fix_123 branch:

git push gh my_fix_123

You will find it easier if you name remote branches the same as local
branch though it is not a requirement:

git push gh name/of/branch:refs/heads/name/of/branch
E.g:
git push gh feature/export:refs/heads/feature/export

Once you have pushed, you can open a “Pull Request” to inform the team
about the changes. More on that below.

You can also create a local branch from a remote branch, whether it is your
own or belongs to someone else on the team. These will be ‘tracked’ so that
commits you push automatically go to the corresponding remote branch:

git fetch SOMEUSER && git checkout -b name/of/branch SOMEUSER/name/of/branch
work on the branch then:
git push SOMEUSER name/of/branch

Collaborating via git rebase

If you have been permitted write access to someone else’s forked
repository, or you have granted someone else write access to your
repository, then there is a further aspect that you need to be aware of.

If both of you are working on the my_fix_123 branch from above, then
when it is time to push, your version may not represent the latest
state. To prevent losing any commits or introducing unnecessary merge
messages, you will first need to access the latest remote changes:

git fetch gh

To see the differences between your local changes (‘my_fix_123’) and
the remote changes (‘gh/my_fix_123’), you can use the log command:

git log --graph --date-order gh/my_fix_123 my_fix_123

If the remote branch (‘gh/my_fix_123’) have moved ahead of yours, then
you will want to rebase your work on top of this new work:

git rebase gh/my_fix_123

Now your local changes will follow the remote changes in the log. You
can check how this looks by viewing the graph again:

git log --graph --date-order gh/my_fix_123 my_fix_123

Now you can push your changes on the ‘my_fix_123’ branch to the remote
repository:

git push gh my_fix_123

Rebasing allows you to update the ‘base’ point at which you branched
from another branch (as described above). You can also use ‘rebase’ to
organize your commits before merging.

It can strip whitespace, since it is good practice not to commit extra
whitespace at the end of lines or files. Git allows you to remove all
extra whitespace during rebase e.g. to origin/develop branch

git rebase --whitespace=strip origin/develop

Rebase “interactive” using the -i flag allows you to remove, edit,
combine etc commits. Git will open an editor to allow you to edit the
commit summary along with instructions on how to omit, modify commits.
For example, to rebase onto origin/develop branch:

git rebase -i origin/develop

Working with submodules

Since submodules are git repositories, all the tools described
previously (add remotes, edit/merge, commit…) can be used within each
submodule repository:

$ cd components/bioformats
$ git remote add melissalinkert git@github.com:melissalinkert/bioformats.git
$ git remote
origin
melissalinkert
sbesson
$ git checkout -b new_branch origin/develop
$ vim Readme.txt
$ git merge melissalinkert/branch
$ git commit -m "Merge branch"
$ git push sbesson new_branch

Additionally, you can perform an update of the submodule from the parent
project, i.e. checkout a specific commit. After updating, the submodule
ends up in a detached HEAD state:

$ cd code/openmicroscopy
$ git submodule update
Submodule path 'components/bioformats': checked out '9328b869b9ba61851adaa3db428ce25f0ca56845'
$ cd components/bioformats
$ git branch
* (no branch)
 develop

If you move between branches in the project, you may end up in a
different state of the submodule:

$ cd ../..
$ git checkout my-branch
M components/bioformats
Switched to branch 'my-branch'

$ git status
On branch my-branch
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: components/bioformats (new commits)
#
no changes added to commit (use "git add" and/or "git commit -a")

If you do not want to modify the submodule state, run
git submodule update. Be careful though, the
git subdmodule update command will silently delete all local
changes under the submodule. If you want to keep your changes, make sure
you have pushed them to GitHub.

To advance the submodule to another commit, you can run the git add
command:

cd components/bioformats
git merge gh/branch
git commit -m "Merged branch"
git push

cd ..
git add bioformats
git commit -m "Move to latest bioformats"

Warning

Be careful NOT to add a trailing slash when adding the submodule,
the following command would want to delete the submodule and add all the
files in the submodule directory:

git add components/bioformats/

There are Git hooks available to make working with submodules safer. See
post-merge-checkout [https://github.com/chaitanyagupta/gitutils/blob/master/submodule-hooks/post-merge-checkout] for an example.

Commit messages

All commit messages in git should start with a single line of 72
characters or less, following by a blank line, followed by any other
text.

Add feature X (See #123, Fix #321)
<this line left blank>
More description about X. It’s really great …

Many git tools expect exactly this format, not the least of which is
GitHub. If you would like to see how these commit messages are rendered
on GitHub, take a look at the repository
https://github.com/kneath/commits

You can read more about commit messages at A Note About Git Commit Messages [https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

Rebasing to keep code clean

Rebasing allows you to update the ‘base’ point at which you branched
from another branch (as described above). You can also use ‘rebase’ to
organize your commits before merging.

	Strip whitespace: It is good practice not to commit extra whitespace
at the end of lines or files. Git allows you to remove all extra
whitespace during rebase - E.g. to origin/develop branch

git rebase --whitespace=strip origin/develop

	If you used the set-up script above, the alias ‘ws’ was added to
allow you to achieve the same action with:

git ws origin/develop

	Rebase “interactive”: To remove, edit, combine etc. your commits, use
the -i flag. Git will open an editor to allow you to edit the commit
summary (gives instructions too). For example, to rebase onto
origin/develop branch:

git rebase -i origin/develop

Branch naming

We roughly follow the git-flow style of naming and managing branch. Info about
the idea can be found under
A successful Git branching model [https://nvie.com/posts/a-successful-git-branching-model/].
There is also a screencast [https://vimeo.com/16018419] available on Vimeo.

[image: Branching Model]
The master branch is always “releasable”, almost always by having a
tagged version merged into it. The develop branch is where unstable
work takes place. At times, another stable branch with the version
name appended (“dev_x_y”) is also active. PRs merged into this
stable branch are also rebased onto develop.

For more information about how multiple branches are being maintained
currently, see Continuous integration.

Advanced: Branch management

One large goal of the work with the forked repository model is to have
both team members as well as external collaborators be aware of upcoming
features as they happen, and have them be able to comment on the work as
quickly and easily.

There is a danger of some members of the community not being aware of
which branches are active and applicable, but if our weekly meetings
contain a summary of what work is happening in which branch as opposed
to just which tickets are in progress on the whiteboard, then it should
be fairly easy for someone from the outside to get involved.

What follows is an explanation of the overarching way we categorize and
review our branches. This is not required reading for everyone.

Branch types

To make working with a larger number of branches easily, we will initially
introduce some terminology. Branches should typically be in one of three
states: investigations, works-in-progress (WIP), or deliverables.

[image: Description of branch types]

Investigations

At the bottom of the figure above are the investigation branches. These
are efforts which are being driven possibly by a single individual and
which are possibly not a part of the current milestone. They may not
lead to released code, or they may be put on hold for some period of
time while other avenues are also investigated.

WIPs

For an investigation to move up to being a work-in-progress, it should
have more involvement from the rest of team and have been discussed and
documented via stories, mini-group meetings, etc. Where necessary –
which will usually be the case – the major components (Bio-Formats, the
model, the database, the server, at least one client) should be under
way.

Deliverables

Finally, deliverable branches are intended for inclusion in the upcoming
milestone. They have all the necessary “paper work” – requirements,
stories, tasks, scenarios, tests, screencasts, etc. Where support is
needed to get all of the pieces in place, the rest of the team can be
involved. And when ready a small number (mostly likely just one) will be
finalized and merged into “develop” at a time. This represents the
post-sprint “demo” concept that has been discussed elsewhere.

The backlog

One non-branch type that should also be kept in mind is the backlog.
Between major deliverables and while a WIP is being ramped up to a
deliverable, the backlog should be continually worked on and the fix
branches also merged in once tested and verified.

Branch workflow

With the definitions, we can walk through the progression of a branch
from inception to delivered code.

First, someone, perhaps even an external collaborator, creates a branch,
typically starting from master or develop (having them branch from the
mainline should hopefully makes things easier later on). Work is first
done locally, and then eventually pushed to
github.com/YOURUSER/openmicroscopy. If you have given access to particular
members of the team, then they may want to work directly on that branch.
Alternatively, they may create branches from your branch, and send you
commits – either via Pull Request or as patches – for you to include
in your work.

It is advisable to keep the OME team in the loop about your work as it
progresses, e.g., by tagging ome on the forum [https://www.openmicroscopy.org/forums] or by opening a Pull Request.

After it is clear that there is some interest in your investigation
branch, then the related stories and possibly requirement should be
flushed out. The design of the work should be checked against the other
parts of OME. For example, a GUI addition should fit into other existing
workflows, and the implications on the other client (i.e. OMERO.web’s impact
on OMERO.insight, or the other way around) should be evaluated.

At this point, the branch will most likely be considered a
work-in-progress and will need to start getting ready for release. The
various related branches will need to be kept in sync. Whether through a
rebase or a merge workflow, all involved parties will need to make sure
they regularly have an up-to-date view of the work going on.

For example, the “remotes.default” has been configured as above, a
sensible thing to do every morning on coming to work is to run:

git remote update

and see all changes that the team have made:

~/git $ git remote update
Fetching team
Fetching origin
remote: Counting objects: 22, done.
remote: Compressing objects: 100% (8/8), done.
remote: Total 8 (delta 7), reused 0 (delta 0)
Unpacking objects: 100% (8/8), done.
From ssh://lust/home/git/omero
3f2ab6f..f80cbc4 dev_4_1_jcb -> origin/dev_4_1_jcb
Fetching gh
...
Fetching jm
remote: Counting objects: 46, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 24 (delta 19), reused 24 (delta 19)
Unpacking objects: 100% (24/24), done.
From git://github.com/jburel/openmicroscopy
* [new branch] feature/plateAcquisitionAnnotation -> jm/feature/plateAcquisitionAnnotation
Fetching colin
From git://github.com/ximenesuk/openmicroscopy
* [new branch] 909-Proposal2 -> colin/909-Proposal2

If you want to get the changes for all submodules, you can use:

git submodule foreach --recursive git remote update

At this point, you may need to “merge –ff-only” or just “rebase” your
work to incorporate the new commits:

git checkout 909-Proposal2
git show-branch 909-Proposal2 colin/909-Proposal2
git rebase colin/909-Proposal2

Finally, the WIP branch will have advanced far enough that it should be
made release-ready, which will need to be discussed at a weekly meeting.
Often at this point, the involved developers will need help from others
getting the documentation, the testing, the screencasts, the scenarios,
and all the other bits and bobs (the “paper work”) ready for release.

One at a time (at least initially), WIP branches will be picked and made
into a deliverable. At this point, several people will have looked over
the code and all the paper work, and the whole team should feel
comfortable with the release-state of the branch. At this point, a Pull
Request should be issued to the official openmicroscopy/openmicroscopy
repository for the final merge. All the related branches in each
individual’s repository can now be deleted.

A major benefit of having the paper work per deliverable done
immediately is that if it becomes necessary the mainline, i.e. the
“develop” branch of openmicroscopy/openmicroscopy, could be released far
more quickly than if we have several deliverables simultaneously in the
air.

Merge branches

A significant disadvantage to having separate lines of inquiry in
separate branches is the possibility that there will be negative
interactions between 2 or more branches when merged, and that these
problems won’t be found until late in development. To offset this risk,
it is possible and advisable to begin creating “temporary merge
branches” earlier in development.

For example, if we assume that two of the branches from the
git remote update command from above are intended for release
fairly soon:

	jm/feature/plateAcquisitionAnnotation

	colin/909-Proposal2

Then we can create a temporary test branch:

git checkout -b test-909-and-plate origin/develop
git merge --no-ff jm/feature/plateAcquisitionAnnotation
git merge --no-ff colin/909-Proposal2

and build and test this composite. This need not be done manually, but
assuming there’s a convention like “all branches for immediate release
are prefixed with ‘deliverable/’ ”, then a jenkins job can attempt the
merge, failing if it is not possible, and run all tests if it succeeds.
Any weekly testing we do can use the artifacts generated by this build
to be as sure as possible that nothing unexpected has leaked in.

Code reviews and comments

On the flip-side, a major advantage to having the above branching
workflow is that is far easier to review the entire impact and style of
a deliverable before it is integrated into the mainline. Any commit or
even line which is being proposed for release can be commented as shown
on https://github.com/features/code-review

If you would like to include other users beyond just the branch owner in
the discussion, you can use a twitter-style name to invite them
(“@SOMEUSER”):
https://github.com/blog/821-mention-somebody-they-re-notified

Pull Requests

Several times above “Pull Requests” (PR) have been mentioned. A Pull
Request is a way to invite someone to merge from one repository to
another. If the commits included in the PR can be seamlessly merged,
then the target user need only click on a button. If not, then there may
be some back-and-forth on the work done, similar to the code reviews of
a deliverable branch. For background, see

	About Pull Requests [https://help.github.com/articles/about-pull-requests/]

	Pull Requests 2.0 [https://github.com/blog/712-pull-requests-2-0]

If you have discovered that something in the proposed branch needs
changing (and you do not have write access to the branch itself), then
you can checkout the branch, make the fixes, push the branch, and open a
Pull Request.

git checkout -b new_stuff SOMEUSER/new_stuff
Modifications
git commit -a -m "My fix of the new_stuff"
git push gh new_stuff
Now go to the new_stuff branch on github.com and open the PR

GitHub’s “Open a pull request” page invites you to leave a comment under
the PR title: we use this comment to describe the PR. A good choice of
PR title and description are both helpful to reviewers of your work. For
the PR description there may be template text already provided for you
to edit. If so then do consider what it says but also feel free to
change that template as much as makes sense for describing your PR.

Pull Request conflicts

When issuing a pull request, usually you will the following message
“This pull request can be automatically merged”. If this is not the
case, follow a possible workflow to fix the problem. For the sake of this
example, bugs is the branch we are working on:

push the branch to GitHub
git push gh bugs:refs/heads/bugs
issue a pull request, not possible to merge due to a conflict.

Now we need to fix the conflict:

checkout your local branch
git checkout bugs
fetch and merge origin/develop
git fetch origin
git merge origin/develop # Any conflicts will be listed
Edit the conflicting files to fix conflicts, then
git add path/to/file
git commit # Use the suggested 'merging...' message
git push gh bugs

Your branch should now be able to merge back into develop. This should
only be done at the very end of a pull request just before it is merged
into origin/develop. Multiple “pull origin/develop” messages in a branch
would be very bad style.

Git resources

	Pro Git book [https://git-scm.com/book]

	https://git-scm.com/book/ch3-6.html

	A successful Git branching model [https://nvie.com/posts/a-successful-git-branching-model/]

Code contributions

In order to expedite the contribution of code to the OME project,
whether individual files or entire modules such as a service or web
application, we have put together the following guidelines. If you have
issues with any of the below, please let us know.

File headers

The official header templates [https://github.com/ome/openmicroscopy/blob/develop/docs/headers.txt] for each file type (Java, Python,
HTML, etc.) can be found in the docs/headers.txt file of the source
repository. The correct template should be applied at the top of all
newly created files. The header of existing files should not be
modified without previous discussion except with regard to keeping the
year line up to date, for example changing “2008-2011” to “2008-2013”.

Character encoding

OME Python and Java source files are all encoded in UTF-8.

Code style and linting

Code styling can be a matter of intense debate.
We are in the process of introducing auto-formatters to most of our repositories to reduce the time wasted on formatting code or discussing code styles.
Where possible pre-commit [https://pre-commit.com/] is used to manage auto-formatters such as black (Python) [https://black.readthedocs.io/], as well as linters such as flake8 (Python) [https://flake8.pycqa.org/].

Copyrights

The copyright line for a newly created file is based on the
institution of the creator of the file and will remain unchanged even
if copied or moved. Before redistribution of code can take place, an
agreement must be reached between the OME team and the copyright
holder.

Licenses

The licenses of any files intended for redistribution with OME must be
compatible with the GPL and more restrictively for the web components
with the AGPL. Some files in the code-base (the schema, etc.) are
released under more liberal licenses but are still compatible with the
GPL.

Distribution

For a block of work to be considered for redistribution with OME, the
code must further be made available in one of the following formats.

Patches/Pull requests

Smaller changes to the existing code base can be submitted to the team
either as patches, or preferably as pull requests on GitHub. You can
read more about pull requests on the Using Git page.
The idea is that such smaller changes are reviewed line-by-line and
then maintained by the core team.

Submodules

Larger submissions, which cannot be effectively reviewed so
intensively, should be submitted as git submodules [https://git-scm.com/book/en/Git-Tools-Submodules]. Such submodules
provide a unique way to describe to a component version, which becomes
linked into the main codebase. During checkout, all submodules are
downloaded into the OME directory; and during the build process,
submodules are compiled into the official distribution.

The OME team cannot maintain or ship code which is only available as a
long-living branch (a fork) of the code base, and we would encourage
submitters to use one of the above methods.

Procedure for accepting code contributions

External contributors will need to sign our
Contributor License Agreement in order to get their pull requests
reviewed.

External pull requests will get an initial review to identify if they are suitable to pass into our
continuous integration system for building and
testing. We try to do this within 2 days of submission but please be patient
if we are busy and it takes longer.

If there are any obvious issues, we will comment and wait for you to fix
them. Once we are confident the PR contains no obvious errors, an “include”
label will be added which means the PR will be included in the merge build
jobs for the appropriate branch.

Build failures will then be noted on the PR and we will either submit a
patch or provide sufficient information for you to fix the problem yourself.
The “include” label will be removed until this is completed. The PR will be
merged once all the builds are green with the “include” label added.

If the code you wish to submit is large enough to require its own submodule,
you should contact us [https://www.openmicroscopy.org/support/] to discuss how we might
incorporate your work into the official distribution.

Examples of contribution templates

There are any number of other projects which have set up similar
practices for code contributions. If you would like to read more on
the rationale, please see:

	https://incubator.apache.org/

	https://www.apache.org/foundation/how-it-works.html

See also

	https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
	Best practices for git commit message formatting

	https://en.wikipedia.org/wiki/Technical_debt
	Wikipedia article on Technical debt

	https://prettier.io/docs/en/why-prettier.html
	Benefits of using an auto-formatter to avoid debates on style

Contributor License Agreement

Similarly to other projects like the Apache Software Foundation [https://www.apache.org/licenses/contributor-agreements.html]
or the Python Software Foundation [https://www.python.org/psf/contrib/contrib-form/], OME uses a Contributor License Agreement (CLA) to accept code contributions. This is a legal document in which a contributor states that they are entitled to contribute their work to the project and are willing to have it used in distributions and derivative works. The CLA also ensures that once a contributor has provided a contribution, they cannot try to withdraw permission for its use at a later date. People and companies can therefore use that software, confident that they will not be asked to stop using pieces of the code at a later date.

To enter the agreement, please the CLA form, fill your full name, email address, the GitHub username under which you will
make your contributions, date and sign the document. Finally, send the completed form to contributors@openmicroscopy.org.

Team communication

For anyone completely new to the project, it is most important to know
how to get plugged in. There is a fairly extensive amount of
communication flying around related to the project, and being able to
find and track it may take some time.

Instant messaging and video conferencing

On a day-to-day level, the team meets in a Slack chatroom. Slack can be used
in your internet browser or via an app; you will be invited to join the team
by an admin.

The daily stand-up meeting is managed via the ‘#general’ channel, with notes
in google docs that are edited throughout the day as people complete the tasks
assigned to them.

Slightly less frequently, members of the team meet on Zoom for voice
discussions. These meetings are organized as needed, but should provide
feedback where appropriate (tickets, notes, etc).

Other IM tools

Slack is the only IM tool used by the entire OME team. Some team members
do also use IRC (#ome on irc.freenode.net) and may provide support
via that channel but in general, all external requests for help are best
submitted and dealt with via the forums so they are available for the
whole community. In particular, the various Gitter channels associated
with OME projects on GitHub are not routinely monitored and responded
to.

Trac

Note

The team is increasingly moving away from Trac and towards using
Trello, especially for managing ‘story’-level items, documentation and
testing.

The Trac server is available under https://trac.openmicroscopy.org/ome and
uses your LDAP account for authentication. Trac was used to record all tickets,
but today is no longer actively used for new tasks and is mainly a record of
older tasks.

Trello

Trello [https://www.trello.com] is an online organizational tool used to
manage “cards” arranged in “lists” on various subject-themed “boards”. This is
currently the team’s main internal planning tool for higher level development
goals and for managing documentation, testing, and the maintenance of our
continuous integration tools.

[image: _images/trello_screenshot.png]

You can request access to the openmicroscopy boards as an external
collaborator. Sign up for a free account and then get in touch with us to be
added. We have now added a public OME organization [https://trello.com/ome]
to allow anyone to follow our development progress (see Public-facing workflow
for more information).

Developer documentation

The developer documentation is maintained under version control, generated
using Sphinx and hosted on the OME website.

Each section of the code base (OMERO, Bio-Formats) has a landing page that
will direct you to all the developer documentation that you might need. For
example, the Developer page for OMERO is
here [https://docs.openmicroscopy.org/latest/omero/developers/index.html].

Jenkins: Continuous integration

Our Jenkins [https://jenkins.io] server is available here [https://ci.openmicroscopy.org/] and also uses LDAP
authentication. Jenkins provides a mechanism to run arbitrary tasks
(“jobs”) on one or more platforms after particular events (time of day,
git push, etc.) These jobs build all of the binaries released by the
team, and also run automated testing.

[image: _images/jenkins_screenshot.png]

Git and GitHub: Source code

Commits take place primarily on GitHub currently. To be aware of
what is really going on, your best option is to become familiar with
Git, GitHub, and the repositories of all the team members. Information
on doing that is available in the Checking out the source code and Using Git.

[image: _images/github_screenshot.png]

Forums and mailing list

Feedback from the OME community happens primarily on the
forum [https://www.openmicroscopy.org/forums] as well as GitHub.

You should be aware of and scan all threads on a fairly regular basis.
The general rule is that requests from the community will be responded
to by the next working day, where to the best of our ability, we keep
the ‘working days’ and time zones of the community in mind.

Where possible, the task of monitoring feedback is spread across the
team. Forum questions are listed at the morning stand-up meeting and can
be checked off in the accompanying notes when dealt with to ensure
nothing is ignored or forgotten.

Anyone on the team should feel free to speak up to answer questions,
but do try to verify the correctness of answers, code samples, etc. before
posting.

As much information about our activities and decision processes should
be made public as possible. For many items, there is no reason to hide
our process, but we do not go out of our way to make them public. For
example, internally the team often uses OmniGraffle documents to
illustrate concepts, but these are kept privately to prevent any
confusion.

Internal servers

There are a number of servers and services inside of the University of
Dundee system that are used by the entire team. You may not need
access to all of them immediately, but it is good to know what is
available in case you do.

	vpn.lifesci.dundee.ac.uk (LDAP-based) is necessary for securely
accessing some of the following resources (e.g. squig, jenkins)

	squig.openmicroscopy.org is the shared, team-wide repository for
data which can be mounted if you are on VPN or within the UoD
system. It contains test data for various file formats.

	The OME QA [http://qa.openmicroscopy.org.uk/] system is an in-house
system for collecting feedback from users, including failing files,
stack traces, etc. Like our community feedback, QA feedback should
be turned into a ticket in a timely manner.

	Home directory / data repository on necromancer (SSH-based)

Note

For anyone who has been hired to work at the University of
Dundee, you will be provided with a
new start tasklist [https://trello.com/c/GmuPPLAi/5-start-tasks] which
itemizes all the things that need to be done to get you set up in RL
(building access, a chair, etc.).

Google Docs

In addition to the services hosted in Dundee, the team also makes use
of several Google resources due to the improved real-time
collaboration that they provide. A single Google collection “OME Docs”
is made available to all team members. Anything placed in the
collection is automatically editable by everyone.

For example, the primary contact information for all team members is
available in the DevContactList spreadsheet [https://docs.google.com/spreadsheets/d/1oHHU1GdEQq03dDf1FzUe0xoEi1RK1BOLOaL0HhMAeEA/edit].

You can enable notifications on the spreadsheet so that you receive an
email if any changes are made.

Meetings

Weekly meetings are held online with all members of the team. Notes are taken
collaboratively in a public Google doc in the “OME Docs > Notes > Tuesday
meetings” collection.
Anyone who missed the meeting is expected to review the notes and
raise any issues during the next meeting.

Periodically, a technical presentation is held during the weekly
meeting. This can be used to either introduce an external tool for
suggested use by the team or as a peer review of in-progress work.

Mini group meetings can either be regularly scheduled (e.g. weekly) or
on an as-needed basis. Notes from such meetings should be recorded in gdocs or
on Trello as appropriate and if necessary matters arising should be covered in
the weekly meeting for the rest of the team.

Team workflow summary

Development management

The OME team uses a Kanban-based approach to manage development work. New
features, or bug fixes which require significant amounts of work, are
identified as priorities, listed in the ‘Priorities List’ board on
Trello and then assigned to a target release. As the particular release
becomes imminent, cards assigned to it are moved to a dedicated release board
to allow all the current work to be tracked in one place. ‘Epic’ bodies of
work may be managed via topic-based boards.

[image: _images/priorities_trello.png]

Developers should focus on the tasks identified as priorities for the next
point release or longer-term work towards the next major version based on the
outcome of team meetings. Constant communication is vital to ensure everyone
is working together to the same goals.

Public-facing workflow

To follow the development process from outside the project, you can view the
milestones on the Trac Roadmap page [https://trac.openmicroscopy.org/ome/milestone/] and Trac tickets for
bugs [https://trac.openmicroscopy.org/ome/report/8] and/or follow our new
public Trello OME organization [https://trello.com/ome]. Trello is now used
for higher level planning and will be of most interest to those concerned with
new features and functionality (Trac is still used for individual bug
tracking). The ‘Getting Started’ board provides full instructions and an index
of current boards, allowing you to browse upcoming work for the next releases
and topic-based ‘epic’ work plans.

[image: _images/public_trello.png]

You can sign up for a free Trello account to add comments and you need to be
added to the organization (by commenting on the ‘Add me, please’ card) to gain
extra permissions e.g. to vote on or add cards.

For information about keeping up to date with OME projects, refer to the
Team communication guide.

Ansible roles development

This document describes the conventions and process used by the OME team for
developing, maintaining and releasing its Ansible [https://www.ansible.com/] roles.

The set of rules and procedures described below applies to the official
OME roles registered in https://github.com/ome/ansible-roles.

Source code

The source code of an Ansible role should be maintained under version control
using Git [https://git-scm.com/] and hosted on GitHub [https://github.com] under the
ome [http://github.com/ome/] organization.
The Git repositories should be named as ansible-role-<ROLENAME>.

Each directory layout should minimally follow the standard
Ansible role layout [https://docs.ansible.com/ansible/2.6/user_guide/playbooks_reuse_roles.html#role-directory-structure] including other files and folders for testing and
deployment. A typical role structure is shown below:

defaults/ # Default variables
handlers/ # Handlers
meta/ # Role metadata
 main.yml # Dependencies and Galaxy metadata
molecule/ # Test
tasks/ # Main list of tasks to be executed
 main.yml
templates/ # Role templates
.travis.yml # CI/deployment configuration file
README.md

Versioning

Ansible roles must follow the PEP440 [https://www.python.org/dev/peps/pep-0440/#semantic-versioning] scheme for versioning. Final releases
must also be compliant with Semantic Versioning [https://semver.org] i.e. a final version must
be expressed as MAJOR.MINOR.PATCH where:

	the MAJOR version must be incremented when incompatible API changes are made,

	the MINOR version must be incremented when functionality is added in a
backwards-compatible manner, and

	the PATCH version must be incremented when backwards-compatible bug
fixes are made.

Final releases must be tagged with a tag matching the version i.e.
MAJOR.MINOR.PATCH with no prefix.

Testing and Continuous Integration

For each Ansible role, a molecule folder should be configured allowing
the testing to be tested using Molecule [https://molecule.readthedocs.io/]. One or more scenarios should be
configured using at least a Docker driver if possible. A generic
molecule folder can be initialized using the following command:

molecule init scenario -r ansible-role-<NAME> -s default -d docker

Continuous Integration of Ansible roles is performed using Travis CI.

Note

OME Ansible roles are getting progressively upgraded from Molecule 1.x to
Molecule 2.x. New roles must be configured using Molecule 2.x.

Distribution and support

All core OME Ansible roles should be deployed to
Ansible Galaxy [https://galaxy.ansible.com] under the
openmicroscopy [https://galaxy.ansible.com/openmicroscopy/] organization.
All roles must support RHEL/CentOS 7 as a primary platform. New roles should
also include Ubuntu 18.04 as a supported platform whenever possible.

The Galaxy role name should be openmicroscopy.<ROLENAME>. For overriding the
default name derived from the GitHub repository name, the role_name variable
should be set in meta/main.yml. For role names composed of multiple
words, note that the Galaxy import process will convert hyphens to underscores.

Ansible playbooks can consume these roles using a requirements.yml
file - see
https://github.com/ome/prod-playbooks/blob/master/requirements.yml
and https://github.com/IDR/deployment/blob/master/ansible/requirements.yml
for examples of such files.

The release of an Ansible role and its deployment to Galaxy release happens
by triggering a role import in Galaxy using the
Travis integration [https://docs.ansible.com/ansible/2.6/reference_appendices/galaxy.html#travis-integrations]
on each release tag.

A PGP-signed tag of form x.y.z should be created for the released version
using scc tag-release or git tag -s and pushed to the
upstream repository:

$ git tag -s x.y.z -m "<tag message>"
$ git push origin x.y.z

Java components (Maven)

This document describes the conventions and process used by the OME team for developing, maintaining and releasing its Java components
using Maven [https://maven.apache.org/] as their build system.

The set of rules and procedures described below applies to all the following
Java libraries.

	Component name

	GitHub URL

	groupId:artifactId

	OME Common Java libary

	https://github.com/ome/ome-common-java

	org.openmicroscopy:ome-common

	OME Data model

	https://github.com/ome/ome-model

	
org.openmicroscopy:ome-model
org.openmicroscopy:ome-xml
org.openmicroscopy:specification
org.openmicroscopy:ome-model-doc

	OME POI

	https://github.com/ome/ome-poi

	org.openmicroscopy:ome-poi

	OME MDB Tools

	https://github.com/ome/ome-mdbtools

	org.openmicroscopy:ome-mdbtools

	OME Stubs

	https://github.com/ome/ome-stubs

	
org.openmicroscopy:ome-stubs
org.openmicroscopy:lwf-stubs
org.openmicroscopy:mipav-stubs

	OME Metakit

	https://github.com/ome/ome-metakit

	org.openmicroscopy:metakit

Note

Some of the historical monolithic Java projects, including Bio-Formats and
OMERO, do not strictly comply with these guidelines yet. As the project
evolves and components are migrated, any new Java repository should follow
this set of rules.

Conventions

Source code and build system

The source code of a Java library should be maintained under version control
using Git [https://git-scm.com/] and hosted on GitHub [https://github.com].

Maven [https://maven.apache.org/] should be used as the primary build system. The directory layout should
follow the standard Maven layout i.e. in the case of a single-module project:

pom.xml
src/
 main/
 java/
 <package>
test/
 main/
 java/
 <package>

Additionally, the top-level pom.xml should be structured according to
the Maven guidelines [https://maven.apache.org/developers/conventions/code.html].

See also

Using Git

Development

Java components use Semantic Versioning [https://semver.org] i.e. given a version number
MAJOR.MINOR.PATCH, increment the:

	MAJOR version when you make incompatible API changes,

	MINOR version when you add functionality in a backwards-compatible manner,
and

	PATCH version when you make backwards-compatible bug fixes.

In between releases the version is bumped to the next SNAPSHOT version.

Code contributions should follow the guidelines highlighted in Code contributions.

Distribution

All the release artifacts for the repositories listed above should be deployed
to the Central Repository according to the process described in the next
section.

Release process

Maintainer prerequisites

It is important to get familiar with the
OSSRH guide [https://central.sonatype.org/pages/ossrh-guide.html] and
especially the
Maven section for performing a release deployment [https://central.sonatype.org/pages/apache-maven.html].

To be able to maintain a Java component, a developer must:

	have a GitHub [https://github.com] account and have push rights to the GitHub source code
repository

	have a Sonatype [https://www.sonatype.com/] account and be registered as a maintainer of the
org.openmicroscopy repository (JIRA issues should be opened for each
developer)

	have a valid PGP key for signing the tags and the JARs

Release strategies

There are different strategies to release a Maven component. At the moment we
are pushing 2 successive commits (or Pull Requests) to the master branch. The
first commit/Pull Request bumps the version number to the release version and
is used for generating the release while the second commit bumps the version
to the next development cycle.

See also

	https://imagej.net/Development_Lifecycle
	A section describing approaches which OME might be considering.

Release preparation

The first step of the Java component release is to prepare a release
candidate on the GitHub [https://github.com] and Sonatype [https://www.sonatype.com/] repositories.

The first operation to perform a Maven release is to bump the version out of
SNAPSHOT either via editing the pom.xml manually or using the Maven
versions plugin:

$ mvn versions:set -DnewVersion=x.y.z -DgenerateBackupPoms=false
$ git add -u .
$ git commit -m “Bump release version to x.y.z”

Additionally, a PGP-signed tag should be created for the released version e.g.
using scc tag-release or more simply git tag -s:

$ scc tag-release -s x.y.z --prefix v

Push the master branch and the tag to your fork for validation by another
member of the team:

$ git push <fork_name> master
$ git push <fork_name> vx.y.z

Once you have updated all the versions and ensured that your build passes
without deployment you can perform the deployment by using the release profile
with:

$ mvn clean deploy -P release
Potentially add -D gpg.keyname=keyname if desired.

This will upload the artifacts to a staging Sonatype repository and perform
all the validation steps. The uploaded artifacts can be examined at
https://oss.sonatype.org/content/repositories/orgopenmicroscopy-xxxx/ where
xxxx is an number incremented for each release.

Release promotion

At the moment all Java components use the Nexus Staging Maven plugin with the
autoReleaseAfterClose option set to false. A separate promotion step is
necessary for releasing the component to the Sonatype releases repository.
This promotion can happen either via the Sonatype UI using the Release button
or using the release phase of the nexus-staging plugin:

$ mvn nexus-staging:release -P release

See the ‘Manually Releasing the Deployment to the Central Repository’ section
of the
Apache Maven guide [https://central.sonatype.org/pages/apache-maven.html]
for more instructions. You should be able to find the staged repository by
visiting https://oss.sonatype.org/#stagingRepositories and searching for
“org.openmicroscopy”.

The rsync to Central Maven and the update of Maven search usually happen
within a couple of hours but the components are accessible beforehand.

Once the tag is validated, the master branch and the tag can also be pushed to
the organization repository together:

$ git push origin vx.y.z
$ git push origin master

Next development version

Then finally restore the new development version using e.g. the Maven versions
plugin again:

Where w == z+1
$ mvn versions:set -DnewVersion=x.y.w-SNAPSHOT -DgenerateBackupPoms=false
$ git add -u .
$ git commit -m “Bump release version to x.y.w-SNAPSHOT”
$ git push origin master

Javadoc

At the moment, we use the service provided https://javadoc.io/ for public
hosting of the Javadoc. For each release to Maven Central, the new Javadoc
should be automatically deployed within 24h. It is possible to trigger the
generation of the Javadoc by visiting the URL.

Java components (Gradle)

This document describes the conventions and process used by the OME team for developing,
maintaining and releasing its Java components using Gradle [https://gradle.org/] as their build system. The
set of rules and procedures described below applies to all the submodules of
https://github.com/ome/omero-build as well as https://github.com/ome/omero-gradle-plugins/.

See also

	Java components (Maven)
	Conventions and process for maintaining the OME Java Components using Maven

Conventions

Source code and build system

The source code of the components is maintained under version control
using Git [https://git-scm.com/] and hosted on GitHub [https://github.com].

Gradle [https://gradle.org/] is the primary build system. The directory layout should
follow the standard Maven layout i.e. in the case of a single-module project:

 .github/
 workflows/ # GitHub actions workflow
 src/
 main/ # Component source
 test/
 main/
CHANGELOG.md
LICENSE.txt
README.md
build.gradle
settings.gradle

Additionally, a publish.gradle might exist allowing to declare some publishing tasks.

See also

Using Git

Development

Server components follow Semantic Versioning [https://semver.org] i.e. given a version number
MAJOR.MINOR.PATCH, increment the:

	MAJOR version when you make incompatible API changes,

	MINOR version when you add functionality in a backwards-compatible manner,
and

	PATCH version when you make backwards-compatible bug fixes.

In between releases the version is bumped to the next SNAPSHOT version.

Code contributions should follow the guidelines highlighted in Code contributions.

Distribution

All the release artifacts for the repositories listed above should be deployed
to the OME Artifactory according to the process described in the next
section.

Release process

To make a new component release, after merging all contributions, on the master
branch, the version defined in build.gradle must be moved out of SNAPSHOT
and set to the target version. Release notes described the major changes should also
be added to CHANGELOG.md.

After committing the changes, a PGP-signed tag must be created for the released version
using git tag -s:

$ git tag -s -m "Tag version x.y.z" vx.y.z:

The version should then be set to the next SNAPSHOT version in build.gradle and
the changes committed to the master branch.

Both the master branch as well as the tag must be pushed upstream:

$ git push origin master vx.y.z

This will trigger two GitHub Actions builds and the generated artifacts will be uploaded
to the OME Artifactory. All builds from the master branch are expected to be snapshots
and uploaded to the ome.snapshots repository. All tag builds are expected to be full
releases and uploaded to the ome.staging repository.

Once the artifacts are uploaded, the release artifacts need to be promoted from ome.staging
to ome.releases by logging into https://artifacts.openmicroscopy.org/, going to the
Artifacts tab, selecting the ome.staging repository and choosing the Move Content action.

C++ components

This document describes the conventions and process used by the OME team for
developing, maintaining and releasing its C++ components.

The set of rules and procedures described below applies to all the following
C++ libraries.

	Component name

	GitHub URL

	CMake project name

	OME Common C++

	https://github.com/ome/ome-common-cpp

	ome-common

	OME Data Model*

	https://github.com/ome/ome-model

	ome-model

	OME Files C++

	https://github.com/ome/ome-files-cpp

	ome-files-cpp

	OME Qt widgets

	https://github.com/ome/ome-qtwidgets

	ome-qtwidgets

	OME CMake Superbuild

	https://github.com/ome/ome-cmake-superbuild

	ome-cmake-superbuild

	OME Files Performance

	https://github.com/ome/ome-files-performance

	ome-files-performance

	OME Files Python bindings†

	https://github.com/ome/ome-files-py

	ome-files-py

	*
	Contains both Java and C++ code - see Java components (Maven)

	†
	Contains both Python and C++ code

Conventions

Source code and build system

The source code of a C++ library should be maintained under version control
using Git [https://git-scm.com/] and hosted on GitHub [https://github.com].

CMake [https://cmake.org/] should be used as the primary build system. There is no standard CMake
directory layout. C++-only components like
ome-common-cpp [https://github.com/ome/ome-common-cpp] use a flattened
directory layout:

cmake/
CMakeLists.txt
docs/ If applicable
 sphinx/
 doxygen/
lib/
test/

Components containing both Java and C++ code like
ome-model [https://github.com/ome/ome-model] organize the C++
sources according to the Maven-recommended layout i.e.:

<module>/src/main/cpp Contains the C++ code
<module>/src/main/java Contains the Java code

Additionally, header files should be maintained alongside the source files.

Development

C++ components use Semantic Versioning [https://semver.org] i.e. given a version number
MAJOR.MINOR.PATCH, increment the:

	MAJOR version when you make incompatible API changes,

	MINOR version when you add functionality in a backwards-compatible manner,
and

	PATCH version when you make backwards-compatible bug fixes.

Code contributions should follow the guidelines highlighted in Code contributions.

Distribution

All the C++ sources and binaries are hosted on the OME downloads according to
the process described in the next section.

Release process

Maintainer prerequisites

To be able to maintain a C++ component, a developer must:

	have a GitHub account and have push rights to the GitHub source code
repository

	have a valid PGP key for signing the tags

Source release

The first step of the C++ component release is to prepare a source release
from the Git repository.

Prior to a source release, a PR should be opened and merged to:

	review the release-version variable in CMakeLists.txt and drop
the # unreleased comment

	update the top-level NEWS.md if it exists with the list of changes
and the release date

A PGP-signed tag should be created for the released version e.g.
using scc tag-release or more simply git tag -s:

$ scc tag-release -s x.y.z --prefix v

Push the master branch and the tag to your fork for validation by another
member of the team:

$ git push <fork_name> master
$ git push <fork_name> vx.y.z

Once the tag is created, run the <COMPONENT>-release job under the
https://ci.openmicroscopy.org/view/Release view tab. This job will create an archive of
the repository using git archive:

$ git archive -v --format=tar "--prefix=${project}-${version}/" -o "${dest}/${project}-${version}.tar" "${tag}"
$ xz "{dest}/${project}-${version}.tar"
$ git archive -v --format=zip "--prefix=${project}-${version}/" -o "${dest}/${project}-${version}.zip" "${tag}"

and copy the source archives under https://downloads.openmicroscopy.org/<component>/<version>.

Next development version

Once the release is accepted, the version number of release-version in
CMakeLists.txt should be incremented to the next patch number i.e.
x.y.z+1 and a suffixed with an # unreleased comment. If a top-level
NEWS.md file exists, an entry should be added for the next patch
release.

See also

	https://github.com/ome/ome-common-cpp/pull/55
	Example Pull Request incrementing the patch number of ome-common-cpp
and updating NEWS.md following the 5.5.0 source release

OME development tools

The following sections summarize the main tools maintained and used internally
for the development of OMERO and Bio-Formats. Note this is not an exhaustive
list of all tools used in the project.

	Development tools: maintenance

	Code management: scc

	OME administration: omego

	OME development platform: devspace

Development tools: maintenance

Most of the development tools used internally by the OME project are
Python-based and hosted on PyPI [https://pypi.org]. Their source
code is on GitHub.

Maintainer prerequisites

To be able to maintain a Python development tool, a developer must:

	have a GitHub account and have push rights to the GitHub source code
repository

	have a valid PGP key for signing the tags

Release process

The first operation to perform while releasing a project is to create a signed
tag locally:

$ cd <project>
$ git tag -s vx.y.z

The last command will create a tag with the default v prefix, i.e. vx.y.z.

Push the signed tag to the source code repository to trigger the upload to PyPI [https://pypi.org] via GitHub action:

$ git push origin vx.y.z

Code management: scc

scc is a Python library with a set of utility commands used for code
management and used in the OME Continuous integration.
More information can be found in the Python package page [https://pypi.org/project/scc] or in
the source code page [https://github.com/ome/snoopycrimecop].

If you find a bug or if you want an additional feature to be implemented,
please open an issue [https://github.com/ome/snoopycrimecop/issues].

Installation

The scc tools are a set of Python [https://www.python.org] based utility programs. The tools suite
can be installed using pip:

$ pip install -U scc

This command will install and/or upgrade the PyGithub and yaclifw
package dependencies. If the version of Python installed is older than 2.7,
this may also install the argparse package.

Github connection

Most of the scc commands instantiate a Github connection using the PyGithub
package. GitHub strongly recommends to turn on two-factor authentification
(2FA), see About Two-Factor Authentication [https://help.github.com/articles/about-two-factor-authentication/] for more details. If 2FA is
activated, the only way to use scc commands creating a GitHub connection is to
create an OAuth token, see
Creating an access token for command-line use [https://help.github.com/articles/creating-an-access-token-for-command-line-use/]
for details on how to create Personal Access Tokens via the GitHub interface.
This token can then be stored in the global Git configuration file:

git config --global github.token REPLACE_BY_PERSONAL_ACCESS_TOKEN

Unless the --token option is passed to the scc command, the
command first looks for the github.token specified in the git config file
and, if found, uses this token to connect to GitHub:

$ scc merge master --info -v
2013-01-16 22:03:49,633 [scc.config] DEBUG Found github.token
...

If no token is found, the command looks for a github.user in the git config
file and, if found, uses this username to connect to Github:

$ scc merge master --info -v
2013-01-16 22:06:00,256 [scc.config] DEBUG Found github.user
Enter password for https://github.com/sbesson:

Note

The password to be entered here is the GitHub password. Connecting using
the GitHub username/password is NOT possible if 2FA has been activated.

Finally, if no token or user is found, both the GitHub username and password
are queried at the prompt:

$ scc merge master --info -v
github.token and github.user not found.
See `scc token` for simpifying use.
Username or token: sbesson
Enter password for https://github.com/sbesson:

scc merge

Merge all the PRs based on specified branch matching the input filters
including all submodules.

Description

Filters of different types can be specified and combined to include and
exclude a set of PRs in the merge command. Each filter needs to be formatted
as key:value. If no key but only a value is specified, it is assumed the
filter is a label filter (see below). These filters can be passed to an
scc merge --include or scc merge --exclude option.

The available filter types are described below:

	Label filters can be specified using the label key i.e.
label:<LABEL>. This filter type will match a Pull Request if one of the
following conditions is met:

	a label named <LABEL> is applied to the Pull Request

	the Pull Request description contains a line starting with --<LABEL>

	one of the Pull Request comments contains a line starting with
--<LABEL>. Note this comment needs to be written by one of the public
members of the organization owning the upstream repository.

	User filters can be specified using the user key i.e. user:<USER>.
This filter type will select a Pull Request if it has been opened by the
user USER. Additionally, two special user values are allowed:

	the #org value will match all PRs opened by public members of the
organization of the upstream repository

	the #all value will match all PRs opened by any user

	PR filters can be specified using the pr key i.e. pr:<NUMBER>. This
will select Pull Requests whose ID matches the input number. The form
#number is also recognized as a PR filter. For repositories containing
submodules, it is possible to filter submodule PRs using
user/repo#number.

Arguments

The first argument is the name of the base branch of origin, e.g.:

$ scc merge develop

	
--comment

	Add a comment to the PR if there is a conflict while merging the PR

$ scc merge develop --comment

	
--default <filterset>, -D <filterset>

	Specify the default set of filters to use

Three filter sets are currently implemented: none, org and
all. The none filter set has no preset filter. The org filter
set uses user:#org and label:include as the default include
filters and label:exclude and label:breaking as the default
exclude filters. The all filter set uses user:#all as the default
include filters.

Default: org

	
--exclude <filter>, -E <filter>

	Exclude PR by filter (see filter semantics above):

$ scc merge develop -E label:l1 -E user:u1 -E #45 -E org/repo#40

	
--include <filter>, -I <filter>

	Include PR by filter (see filter semantics above):

$ scc merge develop -I label:l1 -I user:u1 -I #45 -I org/repo#40

	
--check-commit-status <status>, -S <status>

	Exclude PR based on the status of the last commit

Three options are currently implemented: none, no-error and
success-only. By default (none), the status of the last commit on
the PR is not taken into account.
To include PRs which have a successful status only, e.g. PRs where the
Travis build is green, use the success-only option:

$ scc merge develop -S success-only

To exclude all PRs with an error or failure status, use the
no-error option:

$ scc merge develop -S no-error

	
--info

	Display the candidate PRs to merge but do not merge them

$ scc merge develop --info

	
--push <branchname>

	Push the locally merged branch to Github

$ scc merge develop --push my-merged-branch

	
--reset

	Recursively reset each repository to the HEAD of the base branch

$ scc merge develop --reset

	
--shallow

	Merge the PRs for the top-level directory only, excluding submodules:

$ scc merge develop --shallow

	
--remote <remote>

	Specify the name of the remote to use as the origin. Default: origin:

$ scc merge develop --remote gh

As a concrete example, the first step of a merge job is calling the following merge command:

$ scc merge master --no-ask --reset --comment --push merge_ci

Use cases

The basic command will use the default filters and merge all PRs opened
against master by any public members of the organization, include any PR
labeled as include and exclude any PR labeled as breaking or
exclude:

$ scc merge master

The following command overrides the default set of filters and will only merge
PRs opened against master labeled as my_label:

$ scc merge master -Dnone -Ilabel:my_label

The following command overrides the default set of filters and will merge all
PRs opened against master by public members of the organization, include
any PR labeled with my_label and exclude any PR labeled as exclude:

$ scc merge master -Dnone -Iuser#org -Ilabel:my_label -Elabel:exclude

Changed in version 0.3.0: Added default values for --include and --exclude
options.

Changed in version 0.3.8: Added --shallow and --remote options.

Changed in version 0.4.0: Added --check-commit-status option.

scc travis-merge

Merge PRs in a Travis environment, using the PR comments to generate the merge
filters.

$ scc travis-merge

This command internally defines all the filter options exposed in
scc merge.

The target branch is read from the base of the PR, the
scc merge --default option is set to none meaning no PR is
merged by default and no default scc merge --exclude option is
defined.

The scc merge --include filter is determined by parsing all the PR
comments lines starting with --depends-on.

To include a PR from the same GitHub repository, use the PR number prepended
by #. For instance, to include PR 67 in the Travis build, add a comment
line starting with --depends-on #67 to the PR.

To include a PR from a submodule, use the PR number prepended by
submodule_user/submodule_name#. For instance, to include PR 60 of
bioformats in the Travis build, add a comment line starting with
--depends-on openmicroscopy/bioformats#60 to the openmicroscopy PR.

Note

The scc travis-merge command works solely for Pull Requests’
Travis builds.

scc update-submodules

Update the pointer of all submodules based on specified branch.

The first argument is the name of the base branch of origin, e.g.:

$ scc update-submodules develop

	
--push <branchname>

	Push the locally merged branch to Github and open a PR against the base
branch:

$ scc merge develop --push submodules_branch

	
--no-pr

	Combined with --push option, push the locally merged branch to
Github but skip PR opening:

$ scc merge develop --push submodules_branch --no-pr

	
--remote <remote>

	Specify the name of the remote to use as the origin (default: origin):

$ scc update-submodules develop --remote gh

scc rebase

Rebase a PR (open or closed) onto another branch and open a new PR.

The first argument is the number of the PR to rebase and the second argument
is the name of the branch onto which the PR should be rebased:

$ scc rebase 142 develop

Assuming the head branch used to open the PR 142 was called branch_142,
this command will rebase the tip of branch_142 onto origin/develop, create
a new local branch called rebased/develop/branch_142, push this branch to
Github and open a new PR. Assuming the command opens PR 150, to facilitate the
integration with scc check-prs, a --rebased-to #150
comment is added to PR 142 and a --rebased-from #142 comment is
added to the PR 150. Finally, the command will switch back to the original
branch prior to rebasing and delete the local rebased/develop/branch_142.

Note

By default, scc rebase uses the branches of the origin
remote to rebase the PR. To specify another remote, use the
--remote option.

	
--no-pr

	Skip the opening of the PR

$ scc rebase 142 develop --no-pr

	
--no-delete

	Do not delete the local rebased branch

$ scc rebase 142 develop --no-delete

	
--remote <remote>

	Specify the name of the remote to use for the rebase (default: origin)

$ scc rebase 142 develop --remote snoopycrimecop

	
--continue

	Re-run the command after manually fixing conflicts

If scc rebase fails due to conflict during the rebase, you will
end up in a detached HEAD state.

If you want to continue the rebase operation, you will need to manually
fix the conflicts:

fix files locally
$ git add conflicting_files # add conflicting files
$ git rebase --continue

This conflict solving operation may need to be repeated multiple times
until the branch is fully rebased.

Once all the conflicts are resolved, call scc rebase with the
--continue option:

$ scc rebase --continue 142 develop

Depending on the input options, this command will perform all the steps of
the rebase command (Github pushing, PR opening) skipping the rebase part.

Alternatively, you can abort the rebase and switch to your previous branch:

$ git rebase --abort
$ git checkout old_branch

Changed in version 0.3.10: Automatically add --rebased-to and --rebased-from comments to the
source and target PRs.

scc check-prs

Compare two development branches and check that PRs merged in one branch have
been merged to the other.

The basic workflow of the scc check-prs command is the
following:

	list all first-parent merge commits for each branch including git notes
referenced as see_also/other_branch where other_branch is the name of
the branch to check against.

	exclude all merge commits with a note containing either “See gh-” or “n/a”

	for each remaining merge commit, parse the PR number and look into the PR
body/comments for lines starting with --rebased-to, --rebased-from
or --no-rebase.

Additionally, for each line of each PR starting with --rebased-to or
--rebased-from, the existence of a matching line is checked in the
corresponding source/target PR. For instance, if PR 70 has a
--rebased-from #67 line and a --rebased-from #66 line, then both PRs
66 and 67 should have a --rebased-to #70 line.

This command requires two positional arguments corresponding to the name of
the branch of origin to compare:

$ scc check-prs dev_4_4 develop

	
--shallow

	Check PRs in the top-level directory only, excluding submodules:

$ scc check-prs dev_4_4 develop --shallow

	
--remote <remote>

	Specify the name of the remote to use as the origin (default: origin):

$ scc check-prs dev_4_4 develop --remote gh

	
--no-check

	Do not check links between rebased comments:

$ scc check-prs dev_4_4 develop --no-check

New in version 0.3.10: Added support for body/comment parsing and --rebased-to/from
linkcheck

Changed in version 0.4.0: Improved command output and added support for submodule processing

Changed in version 0.5.0: Renamed command

scc version

Return the version of the scc tools:

$ scc version
0.3.0

New in version 0.2.0.

scc deploy

Deploy a website update using file symlink replacement [https://gist.github.com/hussfelt/3931118#file-symlink-replacement-md]:

$ scc deploy folder

The goal of this command is to enable overwriting of deployed doc content and
allow for “hot-swapping” content served by Apache without downtime and HTTP
404s.

	
--init

	Prepare folder for symlink replacement. Should only be run once

$ scc deploy folder --init

New in version 0.3.1.

The hudson jobs ending with release-docs and OMERO-docs-internal deploy the
documentation artifacts to necromancer. The target directory (sphinx-docs) is
controlled by the hudson:hudson user, so all file system operations are
allowed. Each job has the target directory configured in the SSH publisher
target directory property. After deployment has happened to a temporary
directory, a series of symlink moves happens making sure that the symlink
points to the updated content.

scc check-status

Check the status of the Github API:

$ scc check-status && echo "Passing"
Passing

	
-n <N>

	Display N last status messages from Github API history:

$ scc check-status -n 4
2013-11-04 13:40:48 (minor) We're investigating an increase in error responses from the API.
2013-11-04 14:33:55 (good) Everything operating normally.
2013-11-05 12:59:50 (minor) We're investigating reports of an increase in 502s from the GitHub API.
2013-11-05 13:07:15 (good) Everything operating normally.

New in version 0.4.0.

OME administration: omego

omego is a Python library with a set of utility commands used for managing
the installation and administration of OME applications like OMERO.
More information can be found in the Python package page [https://pypi.org/project/omego] or
in the source code page [https://github.com/ome/omego].

If you find a bug or if you want an additional feature to be implemented,
please open an issue [https://github.com/ome/omego/issues].

Installation

The omego tools are a set of Python [https://www.python.org] based utility programs. The tools suite
can be installed using pip:

$ pip install -U omego

This command will install and/or upgrade the yaclifw package dependency.
If the version of Python installed is older than 2.7, this may also install
the argparse package.

OME development platform: devspace

Devspace is a Continuous Integration tool managed by Jenkins CI
providing an automation framework that runs repeated jobs.
The default deployment initializes a Jenkins CI master with
a predefined set of jobs. More information can be found in the
source code page [https://github.com/ome/devspace].

If you find a bug or if you want an additional feature to be implemented,
please open an issue [https://github.com/ome/devspace/issues].

Running and maintaining Devspace requires:

	Docker engine https://docs.docker.com/.

Optionally a brief understanding of Ansible [https://docs.ansible.com/ansible/2.6/user_guide/intro_getting_started.html],
Ansible inventory [https://docs.ansible.com/ansible/2.6/user_guide/intro_inventory.html],
and Ansible playbooks [https://docs.ansible.com/ansible/2.6/user_guide/playbooks.html].

Installation

Manual

Install following prerequisites:

	Docker engine https://docs.docker.com/engine/installation/

	Docker compose

$ pip install docker-compose

Checkout git repository [https://github.com/ome/devspace] and run

$ docker-compose -f docker-compose.yml up --build

OpenStack

This is an example of how to provision and deploy Devspace using ansible on openstack.
Check out management tools and run:

$ source tenancy.rc
$ cd infrastructure/ansible
$ ansible-playbook os-devspace.yml -e vm_name=devspace-test -e vm_key_name=your_key
$ ansible-playbook -l devspace-test -u centos devspace.yml

To deploy devspace from custom branch, first set up vars:

omero_branch: develop
snoopy_dir_path: "/path/to/snoopy"

git_repo: "https://github.com/user_name/devspace.git"
version: "your_branch"

OME deployment tools

This section describes deployment tools supported by the OME team.
It is primarily designed for the core OME developers who want to
bring new or upgrade existing prerequisites. The following steps explain
the connections between basic repositories and the testing workflow.

Note

This section requires a brief understanding of
Ansible [https://docs.ansible.com/ansible/2.6/user_guide/intro_getting_started.html]
and Docker engine https://docs.docker.com/.

Prerequisites locations

The list of OME prerequisites is stored in multiple git repositories, each of
which is available from several locations.

OME Infrastructure

Infrastructure is provided to simplify deployment using
Ansible [https://www.ansible.com].

The Infrastructure repository is available from:

	https://github.com/ome/infrastructure

Roles repositories are available in:

	https://github.com/ome?q=ansible-role

OMERO-install

OMERO installation scripts are provided to help new users with installing
OMERO.server for the first time on a clean system, and can be used as
the basis for more advanced configurations.

The OMERO-install repository is available from:

	https://github.com/ome/omero-install

The OMEROWEB-install repository is available from:

	https://github.com/ome/omeroweb-install

Testing workflow

The testing environment is split into two tiers: developer and production
testing platform.

Devspace - Continuous Integration (Dev Testing)

Continuous integration tools managed by Jenkins CI providing
an automation framework that runs repeated jobs. The default deployment
initializes a Jenkins CI master with a predefined set of jobs.

The Devspace repository is available from:

	https://github.com/ome/devspace

Devspace Dockerfiles uses common devslave image. The Devslave repository
is available from:

	https://github.com/ome/devslave-c7-docker

CI-master - Continuous Delivery (Production)

Production Continuous Delivery (CD) platform managed by
Jenkins [https://jenkins.io].
More details about CI-master available on Continuous integration

How to add new/upgrade/remove old prerequisites

When the OME platform requires a new set of prerequisites all the above
listed repositories may require updates. Depends on the nature of
packages developers must consider:

	infrastructure repository:

	adding new Ansible role in its own repo or update existing one
https://github.com/ome?q=ansible-role

	adding complete Ansible playbook to Infrastructure

	adding new scripts installing appropriate package and its dependencies
to OMERO-install or OMEROWEB-install, that includes:

	updating Linux and Mac installation scripts

	updating documentation autogen

	deploying Devspace to test OMERO-install scripts, that includes:

	adding new Docker container if requires to support additional processes

	adjusting predefined Jenkins jobs

After successful testing new prerequisites can be proposed as a permanent
adjustment to production CD.

Note

Any Python module that is distributed from Linux distro packages
must be installed from RPM file. Python modules only available
on PyPI [https://pypi.org] should be added as PIP requirement.

Pre release testing

It is also very important to test all the dependencies before release
to make sure sysadmin instructions are fully tested. The easiest way to
test is to use Devspace.

EXAMPLE

This example shows how to test and upgrade OMERO dependencies.

	Open a PR against omero-install (e.g. install Pillow from RPM
https://github.com/ome/omero-install/pull/129).

	Upgrade base docker image using
(e.g. https://github.com/ome/devslave-c7-docker/blob/master/Dockerfile#L19)
and open a PR against devslave-c7-docker [https://github.com/ome/devslave-c7-docker].

Run https://ci.openmicroscopy.org/job/DOCKER-merge.
Latest merge image will be released to Docker Hub [https://hub.docker.com/r/snoopycrimecop/devslave-c7-docker/builds/].
For more details about configuring automated builds on Docker Hub, see
https://docs.docker.com/docker-hub/builds/.

	Update devspace to use newly released container (e.g.
https://github.com/ome/devspace/pull/63/files#diff-296e14ae0dc392c7edd9369908467953).

	Commit and push your changes to github (e.g. https://github.com/ome/devspace/pull/63),
set your branch in devspace ansible config and deploy.

If all tests are passing, above repositories should be tagged
and tag should be propagated accordingly.

Note

We are working very hard to improve and simplify that process.

Continuous integration

The OME project uses Jenkins [https://jenkins.io] as a continuous
integration server. Bring up a web browser to access the OME Jenkins server [https://ci.openmicroscopy.org/].

The following sections summarize the main continuous integration jobs used for
the development of OMERO, Bio-Formats and the OME documentation sets. Note
this is not an exhaustive list of all jobs in the project. To know more about
a particular job, click on the Configure button on the left-side
panel of the job window. This panel should also include a GitHub
button linking to the code repository the job is building from (alternatively,
the console output for the build will indicate where the changes are being
fetched from).

	Continuous integration branches and jobs

	OMERO jobs

	Bio-Formats jobs

	Documentation jobs

	Release jobs

Continuous integration branches and jobs

Versioning

OME uses semantic versioning as defined in https://semver.org. Each version
number is identified as MAJOR.MINOR.PATCH where MAJOR is the major version
number, MINOR the minor version number and PATCH the patch version number.
Additional pre-release labels are added as extensions of this version number,
e.g. 4.4.0-rc1 or 5.0.0-beta1.

	Major release
	An increment of the MAJOR version or the MINOR version is typically
considered as a major release in OME, e.g. 5.0.0 or 5.1.0.

	Point release (patch release)
	An increment of the PATCH version is called a point (or patch) release
in OME, e.g. 4.4.9.

Development branches

Most of the OME code is split between four repositories: openmicroscopy.git [https://github.com/openmicroscopy/openmicroscopy],
bioformats.git [https://github.com/openmicroscopy/bioformats], scripts.git [https://github.com/ome/scripts], ome-documentation.git [https://github.com/openmicroscopy/ome-documentation]. Each repository
contains several development branches associated with development series:

	The “dev_5_y” branch(es) containing work on the current 5.y.x series.

	The “develop” branch containing work on the next major release series.

Note that only two branches are usually maintained simultaneously. With this
workflow, it is possible to have a point release immediately, while still
working on more major releases by ensuring that (nearly) all commits that are
applied to dev_5_y are applied to develop in order to prevent regressions.

Labels

Labels are applied to PRs on GitHub under the “Issues” tab of each repository.

Each release series consists of PRs labeled according to the release version,
which also matches the name of the branch they will be merged into e.g. 5.1.x
series PRs will be labeled as “dev_5_1” and be merged into the dev_5_1
branch.

Multiple labels are used in the PR reviewing process:

	the “include” label allows you to include a PR opened by a non-member of the
OME organization in the merge builds for review.

	the “exclude” label allows you to exclude a PR opened by any user from the
merge builds.

	the “on hold” label allows you to signal that a PR should not be
reviewed or merged, even though it is not excluded.

Job names

All core OME job names take the form
COMPONENT-VERSION-TYPE-DESCRIPTION, where:

	COMPONENT refers to the core OME component, e.g. OMERO for
OMERO or BIOFORMATS for Bio-Formats.

	VERSION is the MAJOR.MINOR version, e.g. 5.0 or 5.1.

	TYPE represents the source of the job and can take the following values:

	latest: build from the tip of the development branch, e.g.
origin/dev_5_0;

	merge: build from the tip of the development branch with all
PRs merged using scc merge with the org default filter set;

	release: build from and optionally create a tag at the tip of
a development branch, e.g. v5.0.1-rc4.

	DESCRIPTION describes the job via a set of dash-separated
keywords, e.g. docs-autogen.

OMERO jobs

Deployments

The table below lists all the hostnames, ports and URLs of the OMERO.web
clients of the deployment jobs described above:

	Series

	OMERO.server deployment job

	Hostname

	Port

	OMERO.web deployment job

	Webclient

	Merge

	OMERO-server

	merge-ci.openmicroscopy.org

	4064

	OMERO-web

	https://merge-ci.openmicroscopy.org/web/

Jobs

	Job task

	Merge jobs

	Merges the PRs and couple versions

	
OMERO-gradle-plugins-push

OMERO-build-push

OMERO-push

OMERO-insight-push

OMERO-matlab-push

	Builds the OMERO artifacts

	
OMERO-gradle-plugins-build

OMERO-build-build

OMERO-build

OMERO-insight-build

OMERO-matlab-build

	Deploy OMERO

	
OMERO-server

OMERO-web

	Runs the OMERO integration tests

	OMERO-test-integration

	OMERO-gradle-plugins-push [https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-gradle-plugins-push]
	OMERO-build-push [https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-build-push]
	OMERO-push [https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-push]
	OMERO-insight-push [https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-insight-push]
	OMERO-matlab-push [https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-matlab-push]
	These jobs merge all the PRs opened against the development branches
and couple the component versions for the following repositories:

	https://github.com/ome/omero-gradle-plugins

	https://github.com/ome/omero-build

	https://github.com/ome/openmicroscopy

	https://github.com/ome/omero-insight

	https://github.com/ome/omero-matlab

	OMERO-gradle-plugins-build [https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-gradle-plugins-build]
	OMERO-build-build [https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-build-build]
	OMERO-build [https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-build]
	OMERO-insight-build [https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-insight-build]
	OMERO-matlab-build [https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-matlab-build]
	These jobs build the OMERO server components, the OMERO bundles and the
OMERO clients from the integration branches created by the push jobs.

	OMERO-server [https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-server]
	This job deploys the server (see Deployments) created by
OMERO-build.

	OMERO-web [https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-web]
	This job deploys the Web application (see Deployments)
created by OMERO-build.

	OMERO-test-integration [https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-test-integration]
	This job deploys an OMERO.server and runs the OMERO.java, OMERO.py
and OMERO.web integration tests.

Bio-Formats jobs

	Job task

	Merge jobs

	Merge the PRs and couple versions

	BIOFORMATS-push

	Build the Bio-Formats artifacts

	
BIOFORMATS-build

BIOFORMATS-image

	Build the Bio-Formats documentation

	BIOFORMATS-linkcheck

	Run the Bio-Formats non-regression tests

	BIOFORMATS-test-repo

	BIOFORMATS-push [https://merge-ci.openmicroscopy.org/jenkins/job/BIOFORMATS-push]
	This job merges all the PRs opened against the development branch of
https://github.com/ome/bio-formats-build and couples the component
versions

	BIOFORMATS-build [https://merge-ci.openmicroscopy.org/jenkins/job/BIOFORMATS-build]
	BIOFORMATS-image [https://merge-ci.openmicroscopy.org/jenkins/job/BIOFORMATS-image]
	This job builds all the Bio-Formats artifacts using Maven and Ant

	BIOFORMATS-linkcheck [https://merge-ci.openmicroscopy.org/jenkins/job/BIOFORMATS-linkcheck]
	This job runs the linkchecker on the Bio-Formats documentation

	BIOFORMATS-test-repo [https://merge-ci.openmicroscopy.org/jenkins/job/BIOFORMATS-test-repo]
	This job consumes the Docker image built by BIOFORMATS-image
and runs the non-regression automated tests against the curated QA
repository

Documentation jobs

All documentation jobs are listed under the Docs [https://ci.openmicroscopy.org/view/Docs] view
tab of Jenkins. A GitHub
button in the left-side panel of the job window links to the code repository
the job is building from (alternatively, the console output for the build will
indicate where the changes are being fetched from).

More detail on how and where to edit OME documentation is available on the
Editing the OME documentation page.

	Job task

	OMERO 5.x series

	Builds the OMERO documentation for review

	OMERO-docs

The Bio-Formats documentation jobs are described in the Bio-Formats jobs
section.

The OME Model set is
independent of the current OMERO/Bio-Formats version.

	Job task

	

	Review PRs opened against the OME Website

	WEBSITE-push

	Review PRs opened against the Presentations website

	PRESENTATIONS-merge

Configuration

For all jobs building documentation using Sphinx, the following environment
variables are used:

	the Sphinx building options, SPHINXOPTS, is set to
-Dsphinx.opts="-W"

	the release number of the documentation is set by OMERO_RELEASE,
BF_RELEASE or by the relevant POM

	the source code links use SOURCE_USER and SOURCE_BRANCH

	for the Bio-Formats and OMERO sets of documentation, the name of the
Jenkins job is set by JENKINS_JOB.

Note that the https://github.com/ome/sphinx_theme repository is no
longer used, this hosted the theme to match the old plone website.

OMERO 5.x series

The branch for the 5.x series of the OMERO documentation is develop.

	OMERO-docs [https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-docs]
	This job is used to review the PRs opened against the develop branch
of the OMERO 5.x documentation

	Merges PRs using scc merge

	Pushes the branch to https://github.com/snoopycrimecop/ome-documentation/tree/merge_ci

	Runs make clean html to build the HTML Sphinx documentation

	Runs make linkcheck

Jekyll websites

The following set of jobs is used to review or publish the content of the
OME Jekyll websites.

	WEBSITE-push [https://merge-ci.openmicroscopy.org/jenkins/job/WEBSITE-push]
	This job is used to review the PRs opened against the master branch of
https://github.com/ome/www.openmicroscopy.org

	Merges PRs using scc merge and pushes the branch to https://github.com/snoopycrimecop/www.openmicroscopy.org/tree/merge_ci

	The GitHub Pages service deploys the staging website content under https://snoopycrimecop.github.io/www.openmicroscopy.org/

	PRESENTATIONS-merge [https://ci.openmicroscopy.org/job/PRESENTATIONS-merge]
	This job is used to review the PRs opened against the master branch of
https://github.com/ome/presentations

	Merges PRs using scc merge and pushes the branch to https://github.com/snoopycrimecop/presentations

	The GitHub Pages service deploys the staging website content under https://snoopycrimecop.github.io/presentations/

Release jobs

The following table lists the main Jenkins jobs used during the release
process. All release jobs should be listed under the https://ci.openmicroscopy.org/view/Release
view.

	Job task

	OMERO

	Trigger the OMERO release jobs

	https://ci.openmicroscopy.org/job/OMERO-DEV-release-trigger

	Tags the OMERO source code repository

	https://ci.openmicroscopy.org/job/OMERO-DEV-release-push

	Build the OMERO download artifacts

	https://ci.openmicroscopy.org/job/OMERO-DEV-release

	Generate the OMERO downloads page

	https://ci.openmicroscopy.org/job/OMERO-DEV-release-downloads

	Deploy the documentation for the decoupled repositories

	https://ci.openmicroscopy.org/job/OMERO-DEV-release-artifacts

	Job task

	Bio-Formats

	Build the Bio-Formats download artifacts

	https://ci.openmicroscopy.org/job/BIOFORMATS-DEV-release

Bio-Formats

	https://ci.openmicroscopy.org/job/BIOFORMATS-DEV-release
	This job builds the Java downloads artifacts of Bio-Formats

	Checks out the RELEASE tag of
https://github.com/ome/bioformats

	Builds Bio-Formats using clean release tools utils docs docs-sphinx dist-bftools dist-matlab dist-octave test

	Downloads the documentation artifacts from OME artifactory

	Copies the build artifacts to a LDAP-protected folder under downloads.openmicroscopy.org

OMERO

	OMERO-DEV-release-trigger [https://ci.openmicroscopy.org/job/OMERO-DEV-release-trigger]
	This job triggers the OMERO release jobs. Prior to running it, its
variables need to be properly configured:

	RELEASE is the OMERO release number.

	ANNOUNCEMENT_URL is the URL of the forum release
announcement and should be set to the value of the URL of the
private post until it becomes public.

	MILESTONE is the name of the Trac milestone which the
download pages should be linked to.

	Triggers OMERO-DEV-release-push

	Triggers OMERO-DEV-release

See the build graph [https://ci.openmicroscopy.org/job/OMERO-DEV-release-trigger/lastSuccessfulBuild/BuildGraph]

	OMERO-DEV-release-push [https://ci.openmicroscopy.org/job/OMERO-DEV-release-push]
	This job creates a tag on the develop branch

	Runs scc tag-release $RELEASE and pushes the tag to the
snoopycrimecop fork of openmicroscopy.git [https://github.com/openmicroscopy/openmicroscopy]

	OMERO-DEV-release [https://ci.openmicroscopy.org/job/OMERO-DEV-release]
	This matrix job builds the OMERO components with Ice 3.6

	Checks out the RELEASE tag of the
snoopycrimecop fork of openmicroscopy.git [https://github.com/openmicroscopy/openmicroscopy]

	Builds the OMERO.server and the clients using :omero_source: OMERO.sh <docs/hudson/OMERO.sh>

	Executes the release-hudson target for the ome.staging Maven
repository

	Copies the build artifacts to a LDAP-protected folder under downloads.openmicroscopy.org

	Triggers OMERO-DEV-release-downloads

	OMERO-DEV-release-downloads [https://ci.openmicroscopy.org/job/OMERO-DEV-release-downloads]
	This job builds the OMERO downloads page

	Checks out the develop branch of
https://github.com/ome/ome-release.git

	Runs make clean omero

	OMERO-DEV-release-artifacts [https://ci.openmicroscopy.org/job/OMERO-DEV-release-artifacts]
	This job deploys the Javadoc and the slice2html documentation

	Loops through omero-{model,common,romio,renderer,server,blitz,gateway-java}

	Checks the latest version available on https://artifacts.openmicroscopy.org

	Deploys the documentation in the respective directory

Documentation release jobs are documented on Documentation jobs.

Editing the OME documentation

This guide assumes you are already familiar with Using Git and GitHub
and only covers where to find the sources, builds etc. you will need to edit
and review any given content. Further information on the CI builds is
available on the Documentation jobs page.

Some of the live web documentation also features ‘Show on GitHub’ and ‘Edit on
GitHub’ links in the lefthand menu which will take you directly to the source
file and allow you to edit within the GH interface and then open a PR (you
should never use this functionality to edit autogenerated pages, see below for
details of these).

Overview

This page covers technical documentation which is written in .rst files
and generated into html using Sphinx. There are sets for each aspect of the
project, plus this set of ‘contributing developer’ documentation aimed at
giving an overview of the OME process and workflows across products that might
be of interest to external people, and the OME internal docs for
internal-only private workflows and processes.

Some of the content for these is either autogenerated or copied from external
sources as described below. Formatting and style guidance can be found in the
README [https://github.com/ome/ome-documentation/blob/develop/README.rst]
for the ome-documentation repo, along with instructions for getting set up
with Sphinx.

The jekyll websites hosted by OME, which include the Help workflow guides, are
covered on Jekyll-hosted websites.

What goes where?

The decision trees below try to give an insight into the thought process
behind choosing what information to host where.

[image: Project-wide information can be hosted privately in the internal docs or gdocs or publicly in this documentation or on the blog for news-worthy items]

Project-wide information

[image: Product-specific information can be hosted in the sphinx docs or help site for instructions and how-tos while the website and/or blog can be used to highlight features and give an overview of functionality]

Product-specific information

Bio-Formats documentation

Hosted at https://docs.openmicroscopy.org/bio-formats/{{version}} (plus
latest redirect - docs.openmicroscopy.org/latest/bio-formats/ [https://docs.openmicroscopy.org/latest/bio-formats/])

This documentation covers all aspects of Bio-Formats - using it with other
tools, specific guidance for Bio-Formats developers, and supported
formats. Related topics - OME file formats and the data model are covered in
the OME Data Model and File Formats documentation.

Builds

See Documentation jobs.

Source

The Sphinx documentation is decoupled from the code repository, at
https://github.com/ome/bio-formats-documentation.

Building locally

The build uses Sphinx via Maven. mvn will generate the webpages
provided you have both Sphinx and Maven installed. To avoid running the
linkchecker by default use mvn -DskipSphinxTests.

Building/reviewing PRs via the CI

Once a PR is open, you can build it for review using the
https://merge-ci.openmicroscopy.org/jenkins/job/BIOFORMATS-linkcheck job on
the Jenkins CI. Staging documentation is no longer deployed at a URL but you
can download it as a zip for review with the correct styling by going to the
workspace folder in the job.

Autogenerated content

The following parts of the documentation are autogenerated during the build:

	Supported Formats table and format pages - generated from
format-pages.txt [https://github.com/ome/bio-formats-documentation/blob/master/src/main/resources/format-pages.txt]

	Dataset structure table - generated from the readers

	Metadata support table - generated from the readers

Generally, unless you are adding new file support, the format pages are the
only ones you are likely to be editing. There is documentation on Adding format/reader documentation pages [https://docs.openmicroscopy.org/latest/bio-formats/developers/format-documentation.html] in the Bio-Formats developer section.

Publishing

The live webpages are updated as part of the release process.

OME Contributing Developer documentation

Hosted at https://docs.openmicroscopy.org/contributing/ (always latest).

This covers the OME team processes and workflows that may be of interest to
external contributors or other open source teams - information about what
tools we use and how, rather than internal-only workflows (like standup prep)
or anything which needs to be kept private (these belong in the internal docs
instead).

Builds

See Documentation jobs.

Source

The source files are at https://github.com/ome/ome-contributing.

Building locally

The build uses Sphinx. You can build locally using make clean
html provided you have Sphinx. There is further
information on getting these set up in the README.

Building/reviewing PRs

Once a PR is open, a build on Read the docs will be triggered. Staging
documentation will be available at a given URL linked to the PR.
See https://docs.readthedocs.io/en/stable/pull-requests.html for more details.

Publishing

The live webpages are updated when a PR is merged.

OME Data Model and File Formats documentation

Hosted at https://docs.openmicroscopy.org/ome-model/{{version}}/ (plus
latest redirect - https://docs.openmicroscopy.org/latest/ome-model/).

This covers the OME-TIFF format and the OME data model.

Builds

See Documentation jobs. Note that this documentation is built and hosted
individually and as part of the OME Files documentation bundle.

Source

The documentation is in the /docs/sphinx/ folder in the code repository at
https://github.com/ome/ome-model.

Building locally

The build uses Sphinx via Maven. You can build locally using make clean
html provided you have both installed.

Building/reviewing PRs via the CI

Once a PR is open, you can build it for review using the
https://merge-ci.openmicroscopy.org/jenkins/job/BIOFORMATS-build job on the Jenkins CI. Staging documentation is
no longer deployed at a URL but you can download it as a zip for review with
the correct styling from the job page (see ‘Last Successful Artifacts’ at the
top of the centre panel.

Publishing

The live webpages are updated as part of the release process.

OME Internal documentation (private)

For members of the OME team, this set of documentation is available at
https://docs.openmicroscopy.org/internal/ behind an ldap log-in.

Builds

https://ci.openmicroscopy.org/job/OME-internal-merge-docs.

Source

https://github.com/openmicroscopy/ome-internal (private repository)

Building locally

The build uses Sphinx via ant. You can build locally using make clean
html provided you have both installed.

Building/reviewing PRs via the CI

Once a PR is open, you can build it using
https://ci.openmicroscopy.org/job/OME-internal-merge-docs and then view the rendered text on the
live webpages.

Publishing

Content is automatically published to the private URL each day or when the
merge build is run.

OMERO documentation

Hosted at https://docs.openmicroscopy.org/omero/{{version}}/ (plus
latest redirect - https://docs.openmicroscopy.org/latest/omero/).

This documentation includes developer and sysadmin documentation for OMERO,
version history, client overviews and CLI usage documentation. Workflow-based
user documentation belongs in the Help instead while features and other
overview material aimed at scientists and other non-IT people may belong on
the website (see Jekyll-hosted websites).

Builds

See Documentation jobs.

Source

All the source files are in the /omero/ folder at
https://github.com/ome/ome-documentation.

Building locally

The build uses Sphinx via ant. You can build locally using make clean
html provided you have both installed. There is further information on
getting these set up and on build targets in the README [https://github.com/ome/ome-documentation/blob/develop/README.rst].

Building/reviewing PRs via the CI

Once a PR is open, you can build it for review using the
https://merge-ci.openmicroscopy.org/jenkins/job/OMERO-docs job on the Jenkins CI. Staging
documentation are no longer deployed at a URL but you can download it as a zip
for review with the correct styling from the top centre panel in the job,
under ‘Last Successful Artifacts’.

Autogenerated/inserted external content

The OMERO documentation is the most complicated set, being the only repo where
material is sourced from other repositories. Source repositories are:

	https://github.com/ome/openmicroscopy/ (OMERO code repo)

	https://github.com/ome/omero-install (OMERO server with Web
installation)

	https://github.com/ome/omeroweb-install (OMERO.web separately from
OMERO.server installation)

Version history

Content for OMERO version history [https://docs.openmicroscopy.org/latest/omero/users/history.html] should
first be submitted as a PR against https://github.com/ome/openmicroscopy/blob/develop/history.rst in the OMERO
code repository. Best practice is to paste the content into the documentation
page to test build it before opening the PR. Once the PR is merged, an
autogenerated PR can be opened against the documentation repo to transfer the
content.

CLI output

The output of the following CLI commands will be used as configuration files
in the documentation:

	omero config parse

	omero ldap setdn -h

	omero db script

	omero web config nginx

	omero web config nginx-location

See autogen_docs [https://github.com/ome/ome-documentation/blob/develop/omero/autogen_docs]
to check the name of the output files. Changes to the output should be
submitted as a PR against the OMERO code repository.

Installation walkthroughs

Installation walkthroughs for OMERO.server and OMERO.web are generated in
separate repositories. When the installation instructions are modified e.g. a
new dependency is added, a PR must be opened against one of the following
repositories:

	https://github.com/ome/omero-install for server installation with
OMERO.web

	https://github.com/ome/omeroweb-install for OMERO.web installation not
with an OMERO.server

OMERO.server installation with OMERO.web:

	The walkthroughs are generated using a bash script

	Code snippets will be included in the documentation pages using
literalinclude e.g. server-ubuntu-ice36.rst

	The changes made against https://github.com/ome/omero-install will only be
included in the documentation once they are merged and the autogen job has
been run. When making changes that need to be visible in the documentation
during review, you will need to:

	Generate the walkthrough(s)

	Open a doc PR

	Copy the generated walkthrough(s) under
omero/sysadmins/unix/walkthrough [https://github.com/ome/ome-documentation/tree/develop/omero/sysadmins/unix/walkthrough]

	Adjust if required the start/end of the literalinclude

OMERO.web installation separately from OMERO.server:

	The walkthroughs are generated using ansible. The
omeroweb-install README [https://github.com/ome/omeroweb-install/blob/master/README.md]
file contains instructions on how to generate the walkthroughs

	The generated walkthroughs are .rst files that are used as pages in the
documentation. This workflow does not use literalinclude.

	The changes made against https://github.com/ome/omeroweb-install will only
be included in the documentation once they are merged and the autogen job
has been run. When making changes that need to be visible in the
documentation during review, you will need to:

	Generate the walkthrough(s)

	Open a doc PR

	Copy the generated walkthrough(s) under
omero/sysadmins/unix/install-web/walkthrough [https://github.com/ome/ome-documentation/tree/develop/omero/sysadmins/unix/install-web/walkthrough]

Model glossary

Content for Glossary of all OMERO Model Objects [https://docs.openmicroscopy.org/latest/omero/developers/Model/EveryObject.html]
is generated using GraphPathReport [https://github.com/ome/omero-server/blob/master/src/main/java/ome/services/graphs/GraphPathReport.java].

To update the content:

	Run the command indicated in GraphPathReport [https://github.com/ome/omero-server/blob/master/src/main/java/ome/services/graphs/GraphPathReport.java]
to generate EveryObject.rst

	Replace EveryObject.rst [https://github.com/ome/ome-documentation/blob/develop/omero/developers/Model/EveryObject.rst]
with the generated one

	Open a PR with any changes

Training examples

The contents of the following examples files is not automatically updated:

	omero/developers/Java.rst [https://github.com/ome/ome-documentation/blob/develop/omero/developers/Java.rst]

	omero/developers/Matlab.rst [https://github.com/ome/ome-documentation/blob/develop/omero/developers/Matlab.rst]

	omero/developers/Python.rst [https://github.com/ome/ome-documentation/blob/develop/omero/developers/Python.rst]

When the examples under https://github.com/ome/openmicroscopy/tree/develop/examples/Training
are modified, you will need to manually make the changes in the above
files and open a doc PR.

Jekyll-hosted websites

The main OME website [https://www.openmicroscopy.org/] is produced using Jekyll [https://jekyllrb.com/].

Installing Jekyll

Jekyll can be installed as a system application (requires administrator
privileges) or for a single user.

	Install a recent version of Ruby. Recent versions of OS X and Linux may
already include a suitable version, however you will require
administrator privileges to install Jekyll.
Alternatively on OS X you can use Homebrew, and on Linux either rbenv [https://github.com/sstephenson/rbenv] or RVM [https://rvm.io/]:

brew install ruby

	Install Jekyll:

gem install jekyll

Running Jekyll

In a terminal enter the local git checkout and run:

jekyll serve -w -b ''

This will build the web pages and start a local server on
http://localhost:4000/.
Jekyll should automatically rebuild the pages when changes are made to the
source files, and will override any baseurl defined in _config.yml.

Editing the website

The source for the OME website [https://www.openmicroscopy.org] is
on GitHub at https://github.com/ome/www.openmicroscopy.org.
The website uses the ‘master’ branch, PRs should be opened directly against
it. Most of the files are written in html but the announcements and blog posts
are in markdown and further content may migrate to markdown in future.

Once a PR is open and has passed Travis, it will be integrated in the
staging integration branch for the OME Website site via the daily
https://merge-ci.openmicroscopy.org/jenkins/job/WEBSITE-push job. The staging Jekyll website will be deployed
by the GitHub Pages [https://pages.github.com] service at
https://snoopycrimecop.github.io/www.openmicroscopy.org for review.

Once the PR is merged, the HEAD of master will be deployed by the
GitHub pages [https://pages.github.com] service at
https://ome.github.io/www.openmicroscopy.org.

Updating the live website requires two steps, first creating an archive of the
static website and then deploying it on the web server:

	to release the Jekyll source code, a signed Git tag needs to be created from
the master branch of the source code. Website tags must follow the
Calendar Versioning [https://calver.org/] scheme using the tag
date

	after pushing the tag, an artifact of the static website will be built by
GitHub Actions [https://github.com/ome/www.openmicroscopy.org/actions]
and deployed as an asset of the associated
GitHub release [https://github.com/ome/www.openmicroscopy.org/releases]

	on the server hosting the website, a cron job will update the website hourly
if a new release has been created on GitHub

	if needed, the static website can also be updated manually by executing the
sudo deploy -f command from the OME website server.

Development of the OME Data Model

Warning

This page is being restructured following the decoupling of the
data model from the Bio-Formats code repository. An updated version will
be published shortly.

Introduction

This is a document describing a way to work and publish the OME model schema
on the OME website, based on observations of the 2016-06 release being
performed; that release version is used in the examples below. Throughout the
process it is important to not just copy and paste, but to understand what is
actually being done and why. The text below is not quite yet a step-by-step
guide, more a set of explanations that should make the necessary steps clear.
Many of the command-line scripts below assume that you start at the top level
of your Bio-Formats repository, and they include some /path/to
directories for you to adjust as appropriate.

Schema development

Clean the repository

In working with the Bio-Formats git repository, first clean the
unnecessary files away so that they cause no confusing clutter that
wastes your time. From the top-level bioformats folder, while
ant clean and mvn clean are both fine approaches,
the most thorough is git clean -dfx.

Major or minor release?

A minor release of the OME model schema may suffice for changes like
adding new legal values to an existing enumeration. A release must
be major if,

	some documents that validate under the current release will not
validate under the new one (a major “data-level” change)

	some terms in the schema have changed meaning and may thus be acted on
differently (a major “information-level” change)

A major release requires changing the schema’s namespace. For a minor
release it suffices to increment the value of the version attribute of
the xsd:schema element, leaving the namespace unchanged.

See also

PR #1999 [https://github.com/openmicroscopy/bioformats/pull/1999] (major schema change), PR #2553 [https://github.com/openmicroscopy/bioformats/pull/2553] (minor schema change)

Create the new schema directory

Note

This subsection is for major releases only. A minor release can reuse
the schema directory for the current release, so skip over this part.

For the schema release process a high fraction of the necessary work
occurs in Bio-Formats’ components/specification directory.
Inside there, components/specification/released-schema contains a subdirectory for
each schema, even before its actual release.

To preserve the version history, the creation of the new schema
directory is performed across a pair of commits. First, the latest patch
gets its new name, for example:

cd components/specification/released-schema
mkdir 2015-01
git mv 2013-10-dev-5/catalog.xml 2015-01
git mv 2013-10-dev-5/*.xsd 2015-01

then, for the subsequent commit, remember to do:

git checkout HEAD^ 2013-10-dev-5/catalog.xml
git checkout HEAD^ 2013-10-dev-5/*.xsd
git add 2013-10-dev-5/*

to restore the released files from the latest patch. In this way, the
files of the actually released schema retain their version history.

For an even later commit one may consider:

git rm -r 2013-10-dev-?

which removes the patch versions if no longer desired.

Note

It may make sense to adjust the above git mv commands to
move fewer files to the release directory. For instance,
OMERO.xsd is not used by the OME schema so need not be
released alongside it in the 2015-01 directory if has not been
changed since the previous release.

Catalog files

The released schema directories have catalog files that list their
contents. For instance:

cd components/specification/released-schema
find . -name catalog.xml

Within each commit, each catalog file should be kept up to date with
changes made in that same directory, such that the catalogs always list
exactly the available schema definitions.

XML transforms

The changes made to the released schemas should be accompanied by
changes to the XML transforms in
components/specification/transforms. For major releases use
git mv in renaming the upgrade and downgrade for the latest
patch. Remember to restore the originals in a later commit, as above
when restoring the schema definition files for the latest patch.

For minor releases it suffices to adjust the existing upgrade and
downgrade transforms for the current release. Remember that users may be
downgrading from an earlier minor version than this newest version.

The transforms’ analog of the catalog files is
components/specification/transforms/ome-transforms.xml which should
describe the transforms in its directory for that commit.

Search and replace

Note

This subsection is for major releases only. A minor release reuses the
current release and patch versions, so skip over this part.

There are various references to the latest patch version and even the
latest release version to be updated; the whole Bio-Formats repository
requires checking.

In replacing the “2013-10-dev-5” schema references within the actual
schema definition files in the new released-schema/2015-01
directory, also update the copyright date in their headers, and the date
in ome.xsd’s first xsd:documentation tag. Likewise, with the
XML transforms, update the copyright date in their headers, and in the
attributes appearing near the start of
components/specification/transforms/ome-transforms.xml.

Other files in which to fix the schema version include:

	components/autogen/build.properties
and ant/xsd-fu.xml for code generation

	the Project Object Model, Maven’s pom.xml

	the components/specification/publish
because of the HTML within

	checks in the Bio-Formats code for the latest schema version,
including various Java classes (version.equals, SCHEMA_LOCATION,
etc.)

Avoid changing:

	sample files in components/specification/samples

	old schema releases

Testing

Once the above changes have been made and committed, it is time to test.
This requires having various prerequisites installed for Bio-Formats
development, including for the C++ implementation [https://downloads.openmicroscopy.org/latest/ome-files-cpp/].
Before each test, clean the repository:

git clean -dfx
ant test
git clean -dfx
mvn test
git clean -dfx
TMPDIR=/tmp/bf-build-`date +%s`
mkdir $TMPDIR
pushd $TMPDIR
cmake `dirs +1`
make
ctest -V
popd

You may care to give make an additional -j option
specifying the number of cores to use in parallelizing the build. Note
that the ctest step can take a long time.

Sample files

OME-XML sample files

Once the schemas and transforms are moved and named to fit the release
version, then the sample files can be upgraded. A new copy of the sample
files is created in a new directory, updated to the new schema using
xsltproc with the new transform, then pretty-printed with
xmllint or similar. A sufficient command-line approach is:

cd components/specification/samples
for SRC in `find 2015-01 -type f -name '*.ome' -o -name '*.xml'`
do DEST=`echo $SRC | sed -e 's/^2015-01/2016-06/‘`
 mkdir -p `dirname $DEST`
 <$SRC xsltproc ../transforms/2015-01-to-2016-06.xsl - | xmllint --format - >$DEST
done

The OME-TIFF files require special handling, as they do not have an
automatic update tool. First, identify them and copy them to the new
directory:

find 2015-01 -name '*.ome.tiff'
cp 2015-01/set-1-meta-companion/*.ome.tiff 2016-06/set-1-meta-companion/

Next, each OME-TIFF file must be edited to have the schema version
changed to that of the new release. They are binary files so choice of
editor is important; the other non-text data must be preserved. One of
several suitable options is Emacs’ Hexl mode [https://www.gnu.org/software/emacs/manual/html_node/emacs/Editing-Binary-Files.html].

OME-TIFF sample files

Sample files for each schema release version are available under
https://downloads.openmicroscopy.org/images/OME-TIFF/. The sample files in the
previous release’s directory, and the multi-file samples in its
tubhiswt-* directories, are upgraded to the new schema using
bfconvert from the updated Bio-Formats repository: in that
repository use ant tools to generate the necessary
bioformats_package.jar Java archive file. The sample files from
the subdirectories are provided also as compressed “zip” archive files.
The files in the bioformats-artificial subdirectory are
generated by other Bio-Formats classes. Putting these facts together,
setting up the new “2016-06” samples folder is easily achieved:

mkdir 2016-06
mkdir 2016-06/binaryonly
mkdir 2016-06/companion
mkdir 2016-06/modulo
cd 2015-01
for i in *.ome.tif*
do /path/to/bioformats/tools/bfconvert $i ../2016-06/$i
done
cd binaryonly
for i in *.ome.tif*
do /path/to/bioformats/tools/bfconvert $i ../../2016-06/binaryonly/$i
done
cd ../companion
for i in *.ome.tif*
do /path/to/bioformats/tools/bfconvert $i ../../2016-06/companion/$i
done
cd ../modulo
for i in *.ome.tif*
do /path/to/bioformats/tools/bfconvert $i ../../2016-06/modulo/$i
done
for i in tubhiswt-?D
do mkdir ../2016-06/$i
 FROM=`ls $i | head -n 1`
 TO=`echo $FROM | sed -e 's/_C0/_C%c/ ; s/_TP0/_TP%t/'`
 /path/to/bioformats/tools/bfconvert $i/$FROM ../2016-06/$i/$TO
done
cd ../2016-06
for i in tubhiswt-?D ; do zip $i.zip $i/* ; done
mkdir bioformats-artificial
cd bioformats-artificial
BF_PROG=loci.formats.tools.MakeTestOmeTiff /path/to/bioformats/tools/bf.sh
for i in *.ome.tif ; do zip $i.zip $i ; done

Review the new sample files to ensure that they look correct. At the end
of the next step they are published online.

Binary Only and companion files:
The OMETiffWriter does not support the writing of sample BinaryOnly or Companion files.
If the only required update is to change the schema version then the files may be edited with a Hex Editor.
Any additional editing may change the length of the file and invalidate the tiff header.

In instances where more detailed changes are required to BinaryOnly samples:

	Write a short program using OMETiffReader and Writer to read and write the existing sample

	Using debugging tools, inject the desired OME XML prior to saveComment in OMETiffWriter close function

	Ensure when modifying the XML that the UUID values are correct

	Verify that files pass using xmlvalid and tiffinfo commands

Schema publication

Schema release

Once a specification change has been made into an ome-model release, the
publish script in the https://github.com/ome/schemas repository automatically generates new schemas pages published at https://www.openmicroscopy.org/Schemas/.

Generated documentation

Documentation for the released schema must be generated from the
ome.xsd definition file. The XML editor oXygen [https://www.oxygenxml.com/] is recommended for
this task, and requires the schema definitions to have been published online
as described above. To build the generated documentation for a given release:

/Applications/oxygen/schemaDocumentationMac.sh https://www.openmicroscopy.org/Schemas/OME/$RELEASE/ome.xsd -cfg:components/specification/omeOxygenDocConfig.xml

Check that the documentation generated in the new output
directory all looks correct.

The https://ci.openmicroscopy.org/job/SCHEMA-documentation job will generate the oXygen [https://www.oxygenxml.com/]
documentation for a given version of the schema. Once generated, this documentation can be transferred to a $RELEASE subfolder of
/var/www/html/www.openmicroscopy.org/specification/schema_doc on web-prod.

Changing the schema

Background

OMERO.server stores data in PostgreSQL, a relational database system.
The data schema defines what data is stored and how, and new major
versions of OMERO may change that schema. Database upgrade scripts
transform data from an older version of OMERO so that it conforms to
the new schema.

Sometimes, a pull request on GitHub against the develop branch of
OMERO may change the code base in ways that cause changes in the
resulting database schema. This is a problem because the schema must
then be updated, and other developers need to know that code from that
pull request may cause problems unless they update their database
accordingly. To make sure that these database updates happen when
necessary, if your pull request affects the schema then you must
increment the database patch number and provide an updated schema as
described below.

Changes to the OME-XML model [https://docs.openmicroscopy.org/latest/ome-model/developers/model-overview.html]
typically require corresponding changes in the OMERO data schema as
defined in its XML mappings files [https://github.com/ome/omero-model/blob/master/src/main/resources/mappings/]. These feed into OMERO’s database
schema so this process is then required.

Patch number conflicts

It is possible that another person may also be working on a pull request
that changes the schema and increments the database patch number. This
is unfortunate because if their pull request is merged it will be as
if your pull request does not change the patch number. Others may then
unwittingly attempt to use your code with an inappropriate database.
If you are considering model changes, it is wise to discuss this with
the core OME developers in advance. When working on a schema-changing
pull request, first ask or check if yours will be the only one that
includes a schema change.

Model object proxies

Changes to model objects that are passed from the server to clients may
require corresponding changes to be made to the IceMapper [https://github.com/ome/omero-blitz/blob/master/src/main/java/omero/util/IceMapper.java] class so that the
client-side proxy objects are properly populated.

For example, commit 8815a409 [https://github.com/ome/openmicroscopy/commit/8815a409e24b41ff4c68829657ad98a278594ade] adds fields to the Roles class
in the server’s System.ice [https://github.com/ome/omero-blitz/blob/master/src/main/slice/omero/System.ice] whose instances can be passed
to clients via the admin service API [https://github.com/ome/omero-blitz/blob/master/src/main/slice/omero/api/IAdmin.ice] so a further
commit 2426042a [https://github.com/ome/openmicroscopy/commit/2426042a4f0b5e31a6e9743844da168a9e550375] was
needed to populate those fields in the proxy object.

Database patch numbers

omero-model.properties [https://github.com/ome/omero-model/blob/master/src/main/resources/omero-model.properties] contains a
configuration setting for omero.db.patch. An existing OMERO
database records the patch number of its schema, as demonstrated from
the psql shell:

omero=> select currentpatch from dbpatch;
 currentpatch

 4
(1 row)

indicating that a database is on patch version 4. Correspondingly,
in https://github.com/ome/omero-model,

$ grep ^omero.db.patch= src/main/resources/omero-model.properties
omero.db.patch=4

By incrementing the patch number with each schema change, OMERO.server
is prevented from attempting to use a database whose schema does not
match its code.

Updating the schema and the SQL scripts

Warning

This section is NOT up-to-date. Steps like using build-schema will not work with 5.5.0

Users may wish to upgrade their database from an older version of OMERO to one
that has your new schema. SQL upgrade scripts are provided to allow users to
upgrade easily without having to understand the schema changes themselves, and
part of the upgrade script will involve making the schema changes entailed
with your pull request. The https://github.com/ome/openmicroscopy/blob/develop/sql/README.txt file describes
where to find the appropriate script for you to adjust. SQL upgrade scripts
must be supplied as part of the code changes to upgrade the database from:

	the last release database, e.g. sql/psql/OMERO5.1DEV__5/OMERO5.0__0,

	the previous patch’s database, e.g.
sql/psql/OMERO5.1DEV__5/OMERO5.1DEV__4.

In your git branch with the code that requires a schema change, edit
omero-model.properties [https://github.com/ome/omero-model/blob/master/src/main/resources/omero-model.properties]
and increment the value of omero.db.patch. For instance, in the above
example, edit the file so that

$ grep ^omero.db.patch= src/main/resources/omero-model.properties
omero.db.patch=5

Move the previous patch’s SQL scripts into their new directory.

$ git mv sql/psql/OMERO5.1DEV__4 sql/psql/OMERO5.1DEV__5

Restore the upgrade to that previous patch.

$ mkdir sql/psql/OMERO5.1DEV__4
$ git mv sql/psql/OMERO5.1DEV__5/OMERO5.1DEV__3.sql sql/psql/OMERO5.1DEV__4/OMERO5.1DEV__3.sql

Build OMERO.server with your code that changes the schema, then use
the build-schema build target to update the SQL scripts in
the new sql/psql/OMERO5.1DEV__5 directory.

$./build.py build-schema

Now, when you use omero db script in setting up a database for
your modified server, the generated SQL script creates the new schema
that your code requires. Use this script to set up your database so
that you can start OMERO.server and test your changes thoroughly.

A combination of sql/psql/OMERO5.1DEV__4/OMERO5.1DEV__3.sql and
the changes within sql/psql/OMERO5.1DEV__5 that git
diff reports should help you to create a new
sql/psql/OMERO5.1DEV__5/OMERO5.1DEV__4.sql.

When you commit your code and issue a pull request, include the
changes to omero-model.properties [https://github.com/ome/omero-model/blob/master/src/main/resources/omero-model.properties] and
https://github.com/ome/openmicroscopy/tree/develop/sql/psql among the commits in the pull request.

Python development

Release process

	Prior to release a new version, the maintainer:
	
	can create a GitHub project and/or milestone if required listing the PRs to be considered in the upcoming release (optional)

	must create an entry in the CHANGELOG: PRs included in the release should be listed in the CHANGELOG with a link to the PR.

	must have the ability to push the generated tag to origin.

Many OME repositories use bump2version [https://pypi.org/project/bump2version/]
to manage version numbers.
These can be identified by the presence of a .bumpversion.cfg file at the top of the
repository.

First fetch and checkout master or main branch:

$ git fetch origin
$ git checkout master
$ git rebase origin/master

You will need to be able to sign commits with gpg. Test this with:

$ echo "test" | gpg --clearsign

Compare the current version in .bumpversion.cfg with the last release version
to see if the current difference represents a patch release.
If any PRs are merged that would require the next release to be a major or minor version
(see semver.org [https://semver.org/]) then that PR can include a version bump created via:

$ bumpversion --no-tag minor|major

If this hasn’t been performed prior to release and you wish to specify the next version
number directly when creating the release, this can be achieved with:

$ bumpversion --new-version 5.9.0 release

If the version is already suitable, simply run:

$ bumpversion release

This will remove the .dev0 suffix from the current version, commit, and tag the release.

To switch back to a development version run:

$ bumpversion --no-tag patch

NB: this assumes next release will be a patch (see below).
To complete the release, push the master branch and the release tag to origin:

$ git push origin master v5.8.0

Publishing to Pypi

Many of the OME Python repositories use GitHub actions to publish to Pypi [https://pypi.org/]
when a new tag is created and pushed to GitHub.
This is typically specified in a file such as .github/workflows/publish_pypi.yml.

Index

 Symbols
 | A
 | B
 | E
 | H
 | J
 | M
 | O
 | P
 | R
 | S
 | W

Symbols

 	
 	
 --check-commit-status

 	scc-merge command line option

 	
 --comment

 	scc-merge command line option

 	
 --continue

 	scc-rebase command line option

 	
 --default

 	scc-merge command line option

 	
 --exclude

 	scc-merge command line option

 	
 --include

 	scc-merge command line option

 	
 --info

 	scc-merge command line option

 	
 --init

 	scc-deploy command line option

 	
 --no-check

 	scc-check-prs command line option

 	
 --no-delete

 	scc-rebase command line option

 	
 --no-pr

 	scc-rebase command line option

 	scc-update-submodules command line option

 	
 	
 --push

 	scc-merge command line option

 	scc-update-submodules command line option

 	
 --remote

 	scc-check-prs command line option

 	scc-merge command line option

 	scc-rebase command line option

 	scc-update-submodules command line option

 	
 --reset

 	scc-merge command line option

 	
 --shallow

 	scc-check-prs command line option

 	scc-merge command line option

 	
 -D

 	scc-merge command line option

 	
 -E

 	scc-merge command line option

 	
 -I

 	scc-merge command line option

 	
 -n

 	scc-check-status command line option

 	
 -S

 	scc-merge command line option

A

 	
 	ANNOUNCEMENT_URL

B

 	
 	BF_RELEASE

 	BIOFORMATS-build

 	BIOFORMATS-image

 	
 	BIOFORMATS-linkcheck

 	BIOFORMATS-push

 	BIOFORMATS-test-repo

E

 	
 	
 environment variable

 	ANNOUNCEMENT_URL

 	BF_RELEASE

 	JENKINS_JOB

 	MILESTONE

 	OMERO_RELEASE

 	RELEASE, [1], [2]

 	SOURCE_BRANCH

 	SOURCE_USER

 	SPHINXOPTS

H

 	
 	https://ci.openmicroscopy.org/job/BIOFORMATS-DEV-release

J

 	
 	JENKINS_JOB

M

 	
 	Major release

 	
 	MILESTONE

O

 	
 	OMERO-build

 	OMERO-build-build

 	OMERO-build-push

 	OMERO-DEV-release

 	OMERO-DEV-release-artifacts

 	OMERO-DEV-release-downloads

 	OMERO-DEV-release-push

 	OMERO-DEV-release-trigger

 	OMERO-docs

 	OMERO-gradle-plugins-build

 	
 	OMERO-gradle-plugins-push

 	OMERO-insight-build

 	OMERO-insight-push

 	OMERO-matlab-build

 	OMERO-matlab-push

 	OMERO-push

 	OMERO-server

 	OMERO-test-integration

 	OMERO-web

 	OMERO_RELEASE

P

 	
 	Point release (patch release)

 	
 	PRESENTATIONS-merge

R

 	
 	RELEASE, [1], [2]

S

 	
 	
 scc-check-prs command line option

 	--no-check

 	--remote

 	--shallow

 	
 scc-check-status command line option

 	-n

 	
 scc-deploy command line option

 	--init

 	
 scc-merge command line option

 	--check-commit-status

 	--comment

 	--default

 	--exclude

 	--include

 	--info

 	--push

 	--remote

 	--reset

 	--shallow

 	-D

 	-E

 	-I

 	-S

 	
 	
 scc-rebase command line option

 	--continue

 	--no-delete

 	--no-pr

 	--remote

 	
 scc-update-submodules command line option

 	--no-pr

 	--push

 	--remote

 	SOURCE_BRANCH

 	SOURCE_USER

 	SPHINXOPTS

W

 	
 	WEBSITE-push

 _images/GitBranchingModel.png

_images/github_screenshot.png
€ - C [{ GitHub, inc. [US]| https://github.com/openmicroscopy

GitHub | swmowmiamms © Explore Festros Entrprion Biog

K Repositories & Members

o0 R
. . L] imperial-FLIMfit wws ks U2

Y - I] openmicroscopy - ke D

. OME (Open Microscopy Envorment) o cpe scutc sftaro and dta forma standrds o strag0 and
Environment i slogel 5 icostapsdoe A ot et st rsin narch oo and
openmicroscopy sty i Europo axd 1o USA. OME hasavr 20 i rooseras wih g i o icrocopy oy
Findod 5 e i o s, ONE Pas o mr o o eoatiod icrocopy 199 o
200,
it opanmicrascopy Lpansroms
saned on Aug 12,2013
13 46 [ome-documentation pynon ko Uas
R Sotioesas0d dcumasaion o he Oen Miescapy Enviemnt

_images/product-decision-tree.png
site (/video)

Product specific

Website?

_images/project-decision-tree.png
ome-internal

relevant to
externals?

(process)

Useful for wider
audience?

_images/jenkins_screenshot.png
integration system for the Open Microscopy Environment project.
4450 |3.1 | Bo-romats | reaking | consarm | ocker | ocs | Experimera | rtin | vt | v | oWeRo | rtase | ir-rory | s | winons |_omer |_uncr
s ‘W Name Last Success Last Failure Last Duration Console | Cron Trigger

®

-
g
8

12hr- #379 1mo11days-#350 1hr18min

Chec File Fingerprint
4 Anonymous View
O, Metadata Search

& Excusion amiscn

Poll SCM: H = = = =

§
;
i

2hrd4imin-#253 8mol7days-#64 24 min
1moddays-£210 1mo4days-£209 6hra8min (Disabled) Poll SCM: @daily
1hrS7min-#254 2hr13min-#253 36 min

Bulld Queue 2hr17min-£255 7mo21days-#69 23min

2hr17min-£242 NA 4min 1 sec

3hriSmin-#£142 23hr- #141 1hr 50 min Poll SCM: H * = x %

10 hr - #633 1mo3days-#585 38 min

10hr - #457 1mo4days-#408 1hr54min

10 hr- #518 8daysahr-£503 2hr10min

Beluga _ (offline)

19hr- #314 3mo 14 days - #2128 min 11 sec Build periodically: H 20 * * =

1dle
1dle
1dle
1dle

gretzky3s
1dle

2 1dle

10hr - #632 4days23hr- #621 36 min

19 hr - #158 1day19hr-#157 24 min

2days7hr-£361 1day7hr- #362 15hr Build periodically: H 8 * * *

1000000000000 OC
[BB eSS

_images/priorities_trello.png
Priorities List ove © @ Awic Showsions

Inbox. 513 (uly 31) Cleanup. 51.4: Proparation 5.2 (. next broaking changes) ©

‘Sysadmin Features 5.1.3 folow up

Javery and sTree 3 Thvead-safe Blo-Formats API

et

Standalons CLI Web “ocked cleanup.

Image -OMERO cllentside

e a

help for dtecting and fing whena I Insight Tag calog for Admins
user has images n 2 group hey're P

OME XML model as object graph

Migraton offigure

Web viewer improvemant

BF G-+ Add support for mocel
wanstorms.

RFE: rotate images

o longer a member of Broken Tost staus =e
° =02 e
Orphaned Dataset in another's e [1cickpuin
Project e

Model Tests

Evaluate cookie polcy =0 (3}

Investgate Fies isSameFil

Warning about loss of annoations

i s
am

Dowrioad multple fes - preserve.
arectories

Adda card

Ontology annotator
o1 G CIIED

Provent daeton of
omero.web fgure fson fle
annotatons I web,

o ow]

o oo OEED P
Aadacara

GlenyServer mismatch error

RFE - Improve password reset faire
arror massage

_images/public_trello.png
OME & rusic
OME openmicroscopy.org

Boards Members

(0 Boards

Bio-Formats: 5.1.3

Decoupling

“ i

_images/trello_screenshot.png
[Board: ellr + [g] reien ‘&
openmicroscopy Get Business Ciass
Superchargo your
ME openmicroscopy.ora/stte M
Boarss | Members
My Org Boards.

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Contributing Developer Documentation

 		
 Checking out the source code

 		
 Code locations

 		
 OMERO

 		
 Bio-Formats

 		
 Other repositories

 		
 Cloning the source code

 		
 Using Git

 		
 Installing Git

 		
 Linux

 		
 Mac OS X

 		
 Windows

 		
 Git configuration

 		
 Interacting with GitHub

 		
 Cloning the repositories

 		
 GitHub remotes

 		
 Pushing to GitHub

 		
 Tracking others’ branches

 		
 Cleaning up your GitHub branches

 		
 Common Git Commands

 		
 Collaborating via git rebase

 		
 Working with submodules

 		
 Commit messages

 		
 Rebasing to keep code clean

 		
 Branch naming

 		
 Advanced: Branch management

 		
 Branch types

 		
 Branch workflow

 		
 Git resources

 		
 Code contributions

 		
 File headers

 		
 Character encoding

 		
 Code style and linting

 		
 Copyrights

 		
 Licenses

 		
 Distribution

 		
 Patches/Pull requests

 		
 Submodules

 		
 Procedure for accepting code contributions

 		
 Examples of contribution templates

 		
 Contributor License Agreement

 		
 Team communication

 		
 Instant messaging and video conferencing

 		
 Other IM tools

 		
 Trac

 		
 Trello

 		
 Developer documentation

 		
 Jenkins: Continuous integration

 		
 Git and GitHub: Source code

 		
 Forums and mailing list

 		
 Internal servers

 		
 Google Docs

 		
 Meetings

 		
 Team workflow summary

 		
 Development management

 		
 Public-facing workflow

 		
 Ansible roles development

 		
 Source code

 		
 Versioning

 		
 Testing and Continuous Integration

 		
 Distribution and support

 		
 Java components (Maven)

 		
 Conventions

 		
 Source code and build system

 		
 Development

 		
 Distribution

 		
 Release process

 		
 Maintainer prerequisites

 		
 Release strategies

 		
 Release preparation

 		
 Release promotion

 		
 Next development version

 		
 Javadoc

 		
 Java components (Gradle)

 		
 Conventions

 		
 Source code and build system

 		
 Development

 		
 Distribution

 		
 Release process

 		
 C++ components

 		
 Conventions

 		
 Source code and build system

 		
 Development

 		
 Distribution

 		
 Release process

 		
 Maintainer prerequisites

 		
 Source release

 		
 Next development version

 		
 OME development tools

 		
 Development tools: maintenance

 		
 Maintainer prerequisites

 		
 Release process

 		
 Code management: scc

 		
 Installation

 		
 Github connection

 		
 scc merge

 		
 scc travis-merge

 		
 scc update-submodules

 		
 scc rebase

 		
 scc check-prs

 		
 scc version

 		
 scc deploy

 		
 scc check-status

 		
 OME administration: omego

 		
 Installation

 		
 OME development platform: devspace

 		
 Installation

 		
 OME deployment tools

 		
 Prerequisites locations

 		
 OME Infrastructure

 		
 OMERO-install

 		
 Testing workflow

 		
 Devspace - Continuous Integration (Dev Testing)

 		
 CI-master - Continuous Delivery (Production)

 		
 How to add new/upgrade/remove old prerequisites

 		
 Pre release testing

 		
 EXAMPLE

 		
 Continuous integration

 		
 Continuous integration branches and jobs

 		
 Versioning

 		
 Development branches

 		
 Labels

 		
 Job names

 		
 OMERO jobs

 		
 Deployments

 		
 Jobs

 		
 Bio-Formats jobs

 		
 Documentation jobs

 		
 Configuration

 		
 OMERO 5.x series

 		
 Jekyll websites

 		
 Release jobs

 		
 Bio-Formats

 		
 OMERO

 		
 Editing the OME documentation

 		
 Overview

 		
 What goes where?

 		
 Bio-Formats documentation

 		
 Builds

 		
 Source

 		
 Building locally

 		
 Building/reviewing PRs via the CI

 		
 Autogenerated content

 		
 Publishing

 		
 OME Contributing Developer documentation

 		
 Builds

 		
 Source

 		
 Building locally

 		
 Building/reviewing PRs

 		
 Publishing

 		
 OME Data Model and File Formats documentation

 		
 Builds

 		
 Source

 		
 Building locally

 		
 Building/reviewing PRs via the CI

 		
 Publishing

 		
 OME Internal documentation (private)

 		
 Builds

 		
 Source

 		
 Building locally

 		
 Building/reviewing PRs via the CI

 		
 Publishing

 		
 OMERO documentation

 		
 Builds

 		
 Source

 		
 Building locally

 		
 Building/reviewing PRs via the CI

 		
 Autogenerated/inserted external content

 		
 Jekyll-hosted websites

 		
 Installing Jekyll

 		
 Running Jekyll

 		
 Editing the website

 		
 Development of the OME Data Model

 		
 Introduction

 		
 Schema development

 		
 Clean the repository

 		
 Major or minor release?

 		
 Create the new schema directory

 		
 Catalog files

 		
 XML transforms

 		
 Search and replace

 		
 Testing

 		
 Sample files

 		
 OME-XML sample files

 		
 OME-TIFF sample files

 		
 Schema publication

 		
 Schema release

 		
 Generated documentation

 		
 Changing the schema

 		
 Background

 		
 Patch number conflicts

 		
 Model object proxies

 		
 Database patch numbers

 		
 Updating the schema and the SQL scripts

 		
 Python development

 		
 Release process

 		
 Publishing to Pypi

_static/file.png

_images/Deliverables.png
Backlog / Tech. Deficit

Scenarios Does/
sereencast

Seenarios po.e/
sereencast

Scenarios Deliverable

Integration
5 or more people
1 at a time!

wIP
2 or more people

Investigations
1 or more people

